Multi-step solar ultraviolet index prediction: integrating convolutional neural networks with long short-term memory for a representative case study in Queensland, Australia

被引:0
|
作者
Al-Musaylh, Mohanad S. [1 ]
Al-Daffaie, Kadhem [2 ]
Downs, Nathan [3 ]
Ghimire, Sujan [3 ]
Ali, Mumtaz [3 ]
Yaseen, Zaher Mundher [4 ]
Igoe, Damien P. [3 ]
Deo, Ravinesh C. [3 ]
Parisi, Alfio V. [3 ]
Jebar, Mustapha A. A. [5 ,6 ]
机构
[1] Southern Tech Univ, Management Tech Coll, Basrah, Iraq
[2] Al Muthanna Univ, Samawah, Iraq
[3] Univ Southern Queensland, Toowoomba, Australia
[4] King Fahd Univ Petr & Minerals, Civil & Environm Engn Dept, Dhahran 31261, Saudi Arabia
[5] Univ Thi Qar, Thi Qar, Iraq
[6] Al Ayen Iraqi Univ, Thi Qar, Iraq
关键词
Artificial intelligence; Decision making; Intelligent risk alarm; Deep learning; Solar predicted models; Ultraviolet radiation; RADIATION PREDICTION; UV; SATELLITE;
D O I
10.1007/s40808-024-02282-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The impact of solar ultraviolet (UV) radiation on public health is severe and can cause sunburn, skin aging and cancer, immunosuppression, and eye damage. Minimization of exposure to solar UV is required in order to reduce the risks of these illnesses to the public. Greater public awareness and the prediction of ultraviolet index (UVI) is considered an essential task for the minimization of solar UV exposures. This research has designed an artificial intelligence (AI) model to predict the multistep solar UVI. The proposed model was based on the integration of convolutional neural networks with long short-term memory network (CLSTM) as the primary model to predict solar UVI, tested for Brisbane (27.47 degrees S, 153.02 degrees E), the capital city in Queensland, Australia. Solar zenith angle (SZA) data were used together with UVI as inputs for the CLSTM of different scales (i.e., 10-min, 30-min, and 60-min) UVI prediction. The CLSTM model was benchmarked against well-established AI models e.g., long short-term memory network (LSTM), convolutional neural network (CNN), Deep Neural Network (DNN), multilayer perceptron (MLP), extreme learning machine (ELM), random forest regression (RFR), Extreme Gradient Boosting (XGB), and Pro6UV Deterministic models. The experimental results showed that the CLSTM model outperformed these models with Root Mean Square Error (RMSE = 0.3817), Mean Absolute Error (MAE = 0.1887), and Relative Root Mean Square Error (RRMSE = 8.0086%), for 10-min prediction. Whereas, for 30-min and 60-min prediction were RMSE = 0.4866/0.5146, MAE = 0.2763/0.3038, RRMSE = 10.4860%/11.5840%, respectively. The research finding confirmed the potential of the proposed data-intelligent model (i.e., CLSTM) can yield improved UVI prediction for both the public and the government agencies.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Cloud Affected Solar UV Prediction With Three-Phase Wavelet Hybrid Convolutional Long Short-Term Memory Network Multi-Step Forecast System
    Prasad, Salvin S.
    Deo, Ravinesh C.
    Downs, Nathan
    Igoe, Damien
    Parisi, Alfio, V
    Soar, Jeffrey
    IEEE ACCESS, 2022, 10 : 24704 - 24720
  • [2] Multi-step short-term wind power prediction based on spatio-temporal graph convolutional networks
    Liu, Zheng
    Xiao, SiYuan
    Liu, Hongliang
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 352 - 357
  • [3] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Pak, Unjin
    Kim, Chungsong
    Ryu, Unsok
    Sok, Kyongjin
    Pak, Sungnam
    AIR QUALITY ATMOSPHERE AND HEALTH, 2018, 11 (08) : 883 - 895
  • [4] A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    Unjin Pak
    Chungsong Kim
    Unsok Ryu
    Kyongjin Sok
    Sungnam Pak
    Air Quality, Atmosphere & Health, 2018, 11 : 883 - 895
  • [5] A Comparative Review of Convolutional Neural Networks, Long Short-Term Memory, and Recurrent Neural Networks in Recommendation Systems
    Tyagi, Geetanjali
    Ray, Susmita
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 395 - 408
  • [6] Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks
    Lee, Woonghee
    Kim, Keonwoo
    Park, Junsep
    Kim, Jinhee
    Kim, Younghoon
    IEEE ACCESS, 2018, 6 : 73068 - 73080
  • [7] Multi-Scale Convolutional Neural Network With Time-Cognition for Multi-Step Short-Term Load Forecasting
    Deng, Zhuofu
    Wang, Binbin
    Xu, Yanlu
    Xu, Tengteng
    Liu, Chenxu
    Zhu, Zhiliang
    IEEE ACCESS, 2019, 7 : 88058 - 88071
  • [8] Long Short-Term Memory (LSTM) Deep Neural Networks in Energy Appliances Prediction
    Kouziokas, Georgios N.
    2019 PANHELLENIC CONFERENCE ON ELECTRONICS AND TELECOMMUNICATIONS (PACET2019), 2019, : 162 - 166
  • [9] Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model
    Baghbani, Asiye
    Bouguila, Nizar
    Patterson, Zachary
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 1331 - 1340
  • [10] A new convolutional neural network and long short term memory combined model for stock index prediction
    Lin, Yuyang
    Zhong, Qiyin
    Huang, Qi
    Li, Muyang
    Ma, Fei
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,