Noncommutative Logarithmic Sobolev Inequalities

被引:0
作者
Jiao, Yong [1 ]
Luo, Sijie [1 ]
Zanin, Dmitriy [2 ]
Zhou, Dejian [1 ,2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410075, Peoples R China
[2] Univ NSW, Sch Math & Stat, Kensington 2052, Australia
基金
国家重点研发计划;
关键词
RIESZ TRANSFORMS; HYPERCONTRACTIVITY; ISOPERIMETRY; SEMIGROUPS; SPACES;
D O I
10.1007/s00220-024-05145-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the logarithmic Sobolev inequality holds for an arbitrary hypercontractive semigroup {e-tP}t >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e<^>{-tP}\}_{t\ge 0}$$\end{document} acting on a noncommutative probability space (M,tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {M}},\tau )$$\end{document}: & Vert;x & Vert;Lp(logL)ps(M)<= cp,s & Vert;Ps(x)& Vert;Lp(M),1<p<infinity,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert x\Vert _{L_p(\log L)<^>{ps}({\mathcal {M}})}\le c_{p,s}\Vert P<^>s(x)\Vert _{L_p({\mathcal {M}})},\quad 1<p<\infty , \end{aligned}$$\end{document}for every mean zero x and 0<s<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<\infty $$\end{document}. By selecting s=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1/2$$\end{document}, one can recover the p-logarithmic Sobolev inequality whenever the Riesz transform is bounded. Our inequality applies to numerous concrete cases, including Poisson semigroups for free groups, the Ornstein-Uhlenbeck semigroup for mixed Q-gaussian von Neumann algebras, the free product for Ornstein-Uhlenbeck semigroups etc. This provides a unified approach for functional analysis form of logarithmic Sobolev inequalities in general noncommutative setting.
引用
收藏
页数:43
相关论文
共 63 条
[1]   GENERAL LOGARITHMIC SOBOLEV INEQUALITIES AND ORLICZ IMBEDDINGS [J].
ADAMS, RA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 34 (02) :292-303
[2]   Dilations of semigroups on von Neumann algebras and noncommutative Lp-spaces [J].
Arhancet, Cedric .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (07) :2279-2314
[3]  
Bakry D., 2014, Analysis and geometry of Markov diffusion operators, V103
[4]  
Bakry D., 1982, LECT NOTES MATH, V920, P146
[5]   Hypercontractivity and Logarithmic Sobolev Inequality for Non-primitive Quantum Markov Semigroups and Estimation of Decoherence Rates [J].
Bardet, Ivan ;
Rouze, Cambyse .
ANNALES HENRI POINCARE, 2022, 23 (11) :3839-3903
[6]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[7]   Poincare type inequalities on the discrete cube and in the CAR algebra [J].
Ben Efraim, L. ;
Lust-Piquard, F. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (3-4) :569-602
[8]  
Bennett C., 1988, INTERPOLATION OPERAT
[9]  
Bergh J., 1976, Interpolation spaces. An introduction
[10]   Embeddings of reduced free products of operator algebras [J].
Blanchard, EF ;
Dykema, KJ .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 199 (01) :1-19