High-efficiency radiation beyond the critical angle via phase-gradient antireflection metasurfaces

被引:0
作者
Ma, Xiaoxuan [1 ,2 ,3 ]
He, Hainan [1 ,2 ,3 ]
Jia, Runqi [1 ,2 ,3 ]
Chu, Hongchen [1 ,2 ,3 ]
Lai, Yun [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Phys & Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Jiangsu Phys Sci Res Ctr, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
high-efficiency radiation; phase-gradient antireflection metasurfaces; total internal reflection; BAND ACHROMATIC METALENS; REFLECTION;
D O I
10.1515/nanoph-2024-0545
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Total internal reflection generally occurs at incident angles beyond the critical angle, confining electromagnetic waves in dielectrics with higher refractive indices. In this work, we present a metasurface-based solution to transform such total reflection into high-efficiency transmission. We demonstrate that a phase-gradient antireflection metasurface designed on the dielectric surface not only compensates for the transverse wave vectors of the incident and transmitted waves but also addresses the impendence mismatch between the two media, eventually achieving high-efficiency transmission with flexibly-controlled wavefronts beyond the critical angle. The design of this unique metasurface is enabled by applying the reciprocity principle to circumvent the traditional limitation of total internal reflection. The theory and functionalities of the phase-gradient antireflection metasurfaces are verified through both simulations and microwave experiments. Our work opens a new avenue for high-efficiency radiation manipulation beyond the critical angle, enabling rich applications such as high-efficiency waveguide-to-free-space couplers, high-radiation-efficiency quantum dots, and high-radiation-efficiency light-emitting diodes.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 47 条
[1]   Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit [J].
Bae, Junho ;
Shin, Yuseop ;
Yoo, Hyungyu ;
Choi, Yongsu ;
Lim, Jinho ;
Jeon, Dasom ;
Kim, Ilsoo ;
Han, Myungsoo ;
Lee, Seunghyun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface [J].
Bao, Yanjun ;
Lin, Qiaoling ;
Su, Rongbin ;
Zhou, Zhang-Kai ;
Song, Jindong ;
Li, Juntao ;
Wang, Xue-Hua .
SCIENCE ADVANCES, 2020, 6 (31)
[3]  
Born M., 1999, Principles of Optics, DOI DOI 10.1017/CBO9781139644181
[4]   Flat optics with dispersion-engineered metasurfaces [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Capasso, Federico .
NATURE REVIEWS MATERIALS, 2020, 5 (08) :604-620
[5]   A broadband achromatic metalens for focusing and imaging in the visible [J].
Chen, Wei Ting ;
Zhu, Alexander Y. ;
Sanjeev, Vyshakh ;
Khorasaninejad, Mohammadreza ;
Shi, Zhujun ;
Lee, Eric ;
Capasso, Federico .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :220-+
[6]   Matte surfaces with broadband transparency enabled by highly asymmetric diffusion of white light [J].
Chu, Hongchen ;
Xiong, Xiang ;
Fang, Nicholas X. ;
Wu, Feng ;
Jia, Runqi ;
Peng, Ruwen ;
Wang, Mu ;
Lai, Yun .
SCIENCE ADVANCES, 2024, 10 (11)
[7]   Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface [J].
Chu, Hongchen ;
Xiong, Xiang ;
Gao, Ya-Jun ;
Luo, Jie ;
Jing, Hao ;
Li, Cheng-Yao ;
Peng, Ruwen ;
Wang, Mu ;
Lai, Yun .
SCIENCE ADVANCES, 2021, 7 (37)
[8]   Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces [J].
Chu, Hongchen ;
Zhang, Haoyang ;
Zhang, Yang ;
Peng, Ruwen ;
Wang, Mu ;
Hao, Yang ;
Lai, Yun .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]  
de Hoop A., 1959, Appl. Sci. Res. Sect. B, V8, P135
[10]   Wave-front Transformation with Gradient Metasurfaces [J].
Estakhri, Nasim Mohammadi ;
Alu, Andrea .
PHYSICAL REVIEW X, 2016, 6 (04)