共 38 条
- [21] Chrystian W., Sp-Batikgan: An Efficient Generative Adversarial Network for Symmetric Pattern Generation, (2023)
- [22] Karras T., Laine S., Aittala M., Hellsten J., Lehtinen J., Aila T., Analyzing and improving the image quality of stylegan, Corr, Vol. Abs/1912.0, (2019)
- [23] Anniemi T.K., Karras T., Laine S., Lehtinen J., Aila T., Improved Precision and Recall Metric for Assessing Generative Models, (2019)
- [24] Zhou Y., Zhu Z., Bai X., Lischinski D., Cohen-Or D., Huang H., Non-stationary texture synthesis by adversarial expansion, (2018)
- [25] Xian Wu P.H., Xu K., A survey of image synthesis and editing with generative adversarial networks, (2017)
- [26] Naeem M.F., Oh S.J., Uh Y., Choi Y., Yoo J., Reliable Fidelity and Diversity Metrics for Generative Models, (2020)
- [27] Yu N., Liu G., Dundar A., Tao A., Catanzaro B., Davis L., Fritz M., Dual contrastive loss and attention for gans, IEEE Int Conference Comput Vision, (2021)
- [28] Dhariwal P., Nichol A.Q., Diffusion models beat gans on image synthesis, Advances in Neural Information Processing Systems, 2021, (2021)
- [29] Heusel M., Ramsauer H., Unterthiner T., Nessler B., Hochreiter S., Gans trained by a two time-scale update rule converge to a local nash equilibrium, Adv Neural Inf Process Syst, pp. 6626-6637, (2017)
- [30] Kong Z., Ping W., On Fast Sampling of Diffusion Probabilistic Models, (2021)