A large scale multi institutional study for radiomics driven machine learning for meningioma grading

被引:0
作者
Karabacak, Mert [1 ]
Patil, Shiv [2 ]
Feng, Rui [1 ]
Shrivastava, Raj K. [1 ]
Margetis, Konstantinos [1 ]
机构
[1] Mt Sinai Hlth Syst, Dept Neurosurg, New York, NY 10029 USA
[2] Thomas Jefferson Univ, Sidney Kimmel Med Coll, Philadelphia, PA USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Meningioma; Grading; Radiomics; Machine learning; MRI; AGGRESSIVE SURGERY; MRI; SYSTEM; BASE;
D O I
10.1038/s41598-024-78311-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Aggressive surgery and focal radiation in the management of meningiomas of the skull base: Preservation of function with maintenance of local control [J].
Black, PM ;
Villavicencio, AT ;
Rhouddou, C ;
Loeffler, JS .
ACTA NEUROCHIRURGICA, 2001, 143 (06) :555-562
[3]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[4]   Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade [J].
Chu, Hairui ;
Lin, Xiaoqi ;
He, Jian ;
Pang, Peipei ;
Fan, Bing ;
Lei, Pinggui ;
Guo, Dongchuang ;
Ye, Chenglong .
ACADEMIC RADIOLOGY, 2021, 28 (05) :687-693
[5]   Radiographic prediction of meningioma grade by semantic and radiomic features [J].
Coroller, Thibaud P. ;
Bi, Wenya Linda ;
Huynh, Elizabeth ;
Abedalthagafi, Malak ;
Aizer, Ayal A. ;
Greenwald, Noah F. ;
Parmar, Chintan ;
Narayan, Vivek ;
Wu, Winona W. ;
de Moura, Samuel Miranda ;
Gupta, Saksham ;
Beroukhim, Rameen ;
Wen, Patrick Y. ;
Al-Mefty, Ossama ;
Dunn, Ian F. ;
Santagata, Sandro ;
Alexander, Brian M. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
PLOS ONE, 2017, 12 (11)
[6]   Estimation of the Youden index and its associated cutoff point [J].
Fluss, R ;
Faraggi, D ;
Reiser, B .
BIOMETRICAL JOURNAL, 2005, 47 (04) :458-472
[7]   Correlation of Diffusion and Perfusion MRI With Ki-67 in High-Grade Meningiomas [J].
Ginat, Daniel T. ;
Mangla, Rajiv ;
Yeaney, Gabrielle ;
Wang, Henry Z. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (06) :1391-1395
[8]   EANO guideline on the diagnosis and management of meningiomas [J].
Goldbrunner, Roland ;
Stavrinou, Pantelis ;
Jenkinson, Michael D. ;
Sahm, Felix ;
Mawrin, Christian ;
Weber, Damien C. ;
Preusser, Matthias ;
Minniti, Giuseppe ;
Lund-Johansen, Morten ;
Lefranc, Florence ;
Houdart, Emanuel ;
Sallabanda, Kita ;
Le Rhun, Emilie ;
Nieuwenhuizen, David ;
Tabatabai, Ghazaleh ;
Soffietti, Riccardo ;
Weller, Michael .
NEURO-ONCOLOGY, 2021, 23 (11) :1821-1834
[9]   The Simpson grading revisited: aggressive surgery and its place in modern meningioma management [J].
Gousias, Konstantinos ;
Schramm, Johannes ;
Simon, Matthias .
JOURNAL OF NEUROSURGERY, 2016, 125 (03) :551-560
[10]   Research Progress of Artificial Intelligence in the Grading and Classification of Meningiomas [J].
Gui, Yuan ;
Zhang, Jing .
ACADEMIC RADIOLOGY, 2024, 31 (08) :3346-3354