Predicting response to immunotherapy in oral squamous cell carcinoma via a CT-based radiomics model

被引:0
作者
Ma, Qifan [1 ]
Ren, Jiliang [1 ]
Wang, Rui [1 ]
Yuan, Ying [1 ]
Tao, Xiaofeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Shanghai Peoples Hosp 9, Dept Radiol, 639 Zhizaoju Rd, Shanghai 200010, Peoples R China
基金
中国国家自然科学基金;
关键词
Oral squamous cell carcinoma; Radiomics; Immunotherapy; Response prediction; Machine learning; HEAD; PEMBROLIZUMAB; CHEMOTHERAPY; KEYNOTE-048; SIGNATURE; CRITERIA;
D O I
10.1186/s12880-024-01444-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundTo investigate whether radiomics models derived from pretreatment CT could help to predict response to immunotherapy in oral squamous cell carcinoma (OSCC).MethodsRetrospectively, a total of 40 patients with measurable OSCC were included. The patients were divided into responder group and non-responder group according to the comparison of pre-treatment and post-treatment CT findings. Radiomics features were extracted from pre-treatment CT images, and optimal features were selected by univariate analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis. Neural network, support vector machine, random forest and logistic regression models were used to predict response to immunotherapy in OSCC, and leave-one-out cross validation was employed to assess the performance of the classifiers. The area under the curve (AUC), accuracy, sensitivity and specificity were calculated to quantify the predictive efficacy.ResultsA total of 7 features were selected to build models upon machine learning methods. By comparing different machine learning based models, the neural network model achieved the best predictive ability, with an AUC of 0.864, an accuracy of 82.5%, a sensitivity of 82.5%, and a specificity of 82.5%.ConclusionsThe pretreatment CT-based radiomics model showed good performance in predicting response to immunotherapy in OSCC. Pretreatment CT-based radiomics model might provide an alternative approach for the selection of patients who benefit from immunotherapy.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Ikenberg, Kristian ;
Stieb, Sonja ;
Moch, Holger ;
Studer, Gabriela ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (04) :921-928
[2]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[3]   Pembrolizumab Alone or With Chemotherapy for Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma in KEYNOTE-048: Subgroup Analysis by Programmed Death Ligand-1 Combined Positive Score [J].
Burtness, Barbara ;
Rischin, Danny ;
Greil, Richard ;
Soulieres, Denis ;
Tahara, Makoto ;
de Castro Jr, Gilberto ;
Psyrri, Amanda ;
Brana, Irene ;
Baste, Neus ;
Neupane, Prakash ;
Bratland, Ase ;
Fuereder, Thorsten ;
Hughes, Brett G. M. ;
Mesia, Ricard ;
Ngamphaiboon, Nuttapong ;
Rordorf, Tamara ;
Wan Ishak, Wan Zamaniah ;
Ge, Joy ;
Swaby, Ramona F. ;
Gumuscu, Burak ;
Harrington, Kevin .
JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (21) :2321-+
[4]   Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study [J].
Burtness, Barbara ;
Harrington, Kevin J. ;
Greil, Richard ;
Soulieres, Denis ;
Tahara, Makoto ;
de Castro, Gilberto, Jr. ;
Psyrri, Amanda ;
Baste, Neus ;
Neupane, Prakash ;
Bratland, Ase ;
Fuereder, Thorsten ;
Hughes, Brett G. M. ;
Mesia, Ricard ;
Ngamphaiboon, Nuttapong ;
Rordorf, Tamara ;
Ishak, Wan Zamaniah Wan ;
Hong, Ruey-Long ;
Mendoza, Rene Gonzalez ;
Roy, Ananya ;
Zhang, Yayan ;
Gumuscu, Burak ;
Cheng, Jonathan D. ;
Jin, Fan ;
Rischin, Danny .
LANCET, 2019, 394 (10212) :1915-1928
[5]   Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non-Small-Cell Lung Cancer [J].
Buttner, Reinhard ;
Gosney, John R. ;
Skov, Birgit Guldhammer ;
Adam, Julien ;
Motoi, Noriko ;
Bloom, Kenneth J. ;
Dietel, Manfred ;
Longshore, John W. ;
Lopez-Rios, Fernando ;
Penault-Llorca, Frederique ;
Viale, Giuseppe ;
Wotherspoon, Andrew C. ;
Kerr, Keith M. ;
Tsao, Ming-Sound .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (34) :3867-+
[6]   Head and Neck Cancer [J].
Chow, Laura Q. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (01) :60-72
[7]   The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC) [J].
Cohen, Ezra E. W. ;
Bell, R. Bryan ;
Bifulco, Carlo B. ;
Burtness, Barbara ;
Gillison, Maura L. ;
Harrington, Kevin J. ;
Quynh-Thu Le ;
Lee, Nancy Y. ;
Leidner, Rom ;
Lewis, Rebecca L. ;
Licitra, Lisa ;
Mehanna, Hisham ;
Mel, Loren K. ;
Raben, Adam ;
Sikora, Andrew G. ;
Uppaluri, Ravindra ;
Whitworth, Fernanda ;
Zandberg, Dan P. ;
Ferris, Robert L. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
[8]  
Colen RR, 2021, J Immunother Cancer, V9
[9]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[10]  
Guo Wei, 2020, Hua Xi Kou Qiang Yi Xue Za Zhi, V38, P489, DOI 10.7518/hxkq.2020.05.003