k-filters and k-{∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{^*\}$$\end{document}-congruences of core regular double Stone algebras

被引:0
作者
Abd El-Mohsen Badawy [1 ]
Eman Gomaa [1 ]
机构
[1] Tanta University,Department of Mathematics Faculty of Science
关键词
Stone algebras; Double Stone algebras; Regular double Stone algebras; Core regular double Stone algebras; Ideals; Filters;
D O I
10.1007/s00500-024-09767-z
中图分类号
学科分类号
摘要
In this paper, we investigate various elegant filters and congruences of the class of core regular double Stone algebras (briefly CRD-Stone algebras). We define and characterize the concepts of k-filters and principal k-filters of a core regular double Stone algebra with the core element k, as well as their algebraic structures. We also look at k-{∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{^*\}$$\end{document}-congruences and principal k-{∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{^*\}$$\end{document}-congruences of a CRD-Stone algebra L that are induced by k-filters and principal k-filters of L, respectively. We find an isomorphism between the lattice Fk(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{k}(L)$$\end{document} of all k-filters of L (the lattice Fkp(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{k}^{p}(L)$$\end{document} principal k-filters of L) and the lattice Conk∗(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Con^{*}_{k}(L)$$\end{document} of all k-{∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{^*\}$$\end{document}-congruences on L (the lattice Conk∗(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Con^{*}_{k}(L)$$\end{document} of all principal k-{∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{^*\}$$\end{document}-congruences) of a CRD-Stone algebra L.
引用
收藏
页码:10085 / 10097
页数:12
相关论文
共 41 条
[1]  
Badawy A(2017)Characterization of congruence lattices of principal Math Slovaca 67 803-810
[2]  
Badawy A(2018)-algebras Math Methods Appl Sci 41 5719-5732
[3]  
Badawy A(2019)Extensions of the Glivenko-type congruences on a Stone lattice Southeast Asian Bull Math 34 13-25
[4]  
Badawy A(2020)Congruences and de Morgan filters of decomposable MS-algebras Filomate 34 35-50
[5]  
Badawy A(2015)Construction of a core regular MS- algebra Int J Math Comput 26 15-25
[6]  
Atallah M(2019)Boolean filters of principal Hacettepe J Math Stat 48 1479-1487
[7]  
Badawy A(2023)-algebras AIMS Math 8 19857-19875
[8]  
Atallah M(2017)-intervals of an Math Slov 67 263-270
[9]  
Badawy A(2019)-algebra Math Slov 70 1041-1056
[10]  
Helmy A(2023)Permutabitity of principal MS-algebras Soft Comput 37 537-545