Limiting Profile of Solutions for Schrödinger-Poisson System with Shrinking Self-Focusing Core

被引:0
|
作者
Shuai, Wei [1 ,2 ]
Ye, Jianghua [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
关键词
Schr & ouml; dinger-Poisson system; Limiting profile; Self-focusing core; Penalization method; Nehari manifold; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; THOMAS-FERMI; POSITIVE SOLUTIONS; BOUND-STATES; EXISTENCE; EQUATIONS; ATOMS; HARTREE;
D O I
10.1007/s12220-024-01895-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Poisson system -Delta u+u+Phi(y)u=Qn(y)|u|p-2u,y is an element of R3,-Delta Phi(y)=u2,y is an element of R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+u+\Phi (y)u=Q_n(y)|u|<^>{p-2}u, \hspace{3mm}y \in {\mathbb {R}}<^>3,\\ -\Delta \Phi (y) =u<^>2, \hspace{3mm}y \in {\mathbb {R}}<^>3, \end{array}\right. } \end{aligned}$$\end{document}where p is an element of(4,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (4,6)$$\end{document} and Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} are concrete bounded functions whose self-focusing core supp{Qn+}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$supp\{Q_n<^>+\}$$\end{document} shrinks to a finite set of points as n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. We prove the existence of positive ground state solution un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n$$\end{document} corresponding to Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} and study the limiting profile of un\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n$$\end{document} as n ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. We also prove the existence of localized bound state solutions for above Schr & ouml;dinger-Poisson system by using penalization method. Moreover, by using Green's representation formula, we improve the result in [14, Theorem 1.3] for nonlinear Schr & ouml;dinger equation.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] NORMALIZED SOLUTIONS FOR PLANAR SCHRÖDINGER-POISSON SYSTEM WITH A POSITIVE POTENTIAL
    Shu, Muhua
    Wen, Lixi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [2] On the existence of solutions for nonlinear Schrödinger-Poisson system
    Correa, Genivaldo dos Passos
    dos Santos, Gelson C. G.
    Silva, Julio Roberto S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [3] Variable Supercritical Schrödinger-Poisson system with singular term
    de Araujo, Anderson Luis Albuquerque
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [4] Schrödinger-Poisson System Involving Potential Vanishing at Infinity and Unbounded Below
    Correa, Genivaldo P.
    dos Santos, Gelson C. G.
    JOURNAL OF CONVEX ANALYSIS, 2025, 32 (04) : 1117 - 1134
  • [5] Limiting profile of solutions for sublinear elliptic equations with shrinking self-focusing core
    Liu, Wei
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3340 - 3347
  • [6] On quasilinear Schrödinger-Poisson system involving Berestycki-Lions type conditions
    Du, Yao
    Su, Jiabao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (02)
  • [7] Existence of Ground State Solutions for the Schródinger-Poisson System in R2
    Yuan, Ziqing
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 67 - 87
  • [8] SIGN-CHANGING SOLUTIONS FOR THE NONLINEAR SCHR(SIC)DINGER-POISSON SYSTEM WITH CRITICAL GROWTH
    Deng, Yinbin
    Shuai, Wei
    Yang, Xiaolong
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2291 - 2308
  • [9] Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities
    Li, Anran
    Wei, Chongqing
    Zhao, Leiga
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [10] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (09) : 2049 - 2070