FKBP5 Regulates the Osteogenesis of Human Adipose-derived Mesenchymal Stem Cells

被引:0
|
作者
Tian, Xiao-yu [1 ,2 ,3 ]
Zhu, Biao [4 ]
Fang, Wen-can [1 ,2 ]
Zhou, Xiang-bin [2 ]
Wu, Ning [2 ]
Li, Hong [2 ]
Wen, Ning [1 ]
Li, Jin [2 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Stomatol, Beijing 100853, Peoples R China
[2] Beijing Inst Pharmacol & Toxicol, Beijing Key Lab Neuropsychopharmacol, State Key Lab Toxicol & Med Countermeasures, Beijing 100850, Peoples R China
[3] Med Sch Chinese PLA, Beijing 100853, Peoples R China
[4] Capital Med Univ, Fuxing Hosp, Dept Stomatol, Beijing 100038, Peoples R China
来源
CURRENT MEDICAL SCIENCE | 2024年
关键词
human adipose-derived mesenchymal stem cells; FK506 binding protein 5; osteogenic differentiation; cochaperone; bone tissue engineering; BONE-MARROW; DIFFERENTIATION; PROTEIN; FETAL;
D O I
10.1007/s11596-024-2941-8
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
ObjectiveHuman adipose-derived stem cells (ASCs) have shown considerable potential for tissue regeneration. FK506 binding protein (FKBP) 5 is a cochaperone of several proteins. The purpose of this work was to explore the function of FKBP5 in ASC osteogenesis.MethodsLentivirus infection was used to overexpress or knock down FKBP5 in ASCs. To inhibit FKBP5, SAFit2, a specific inhibitor of FKBP5, was used. Next, the osteogenic capacity of ASCs was evaluated via alkaline phosphatase (ALP) staining, and extracellular calcium precipitation was detected via Alizarin red S staining. The binding proteins of FKBP5 were assessed via proteomics and validated via coimmunoprecipitation experiments.ResultsFollowing osteogenic induction, FKBP5 expression increased at both the mRNA and protein levels. Interestingly, FKBP5 upregulation by lentivirus infection increased the ability of ASCs to differentiate into osteoblasts, as revealed by ALP staining, while ALP activity also increased. Moreover, increased extracellular calcium precipitation confirmed that FKBP5 overexpression promoted ASC osteogenesis into osteocytes. On the other hand, FKBP5 knockdown or functional suppression with SAFit2 decreased this process. Furthermore, the proteomics and coimmunoprecipitation data demonstrated that FKBP5 bound to a variety of proteins in ASCs. These proteins serve as the molecular chaperone base upon which the osteogenesis-regulating activity of FKBP5 rests.ConclusionOur study revealed that FKBP5 enhances the osteogenesis of ASCs, providing a feasible method for clinical bone tissue engineering applications.
引用
收藏
页码:1270 / 1279
页数:10
相关论文
共 50 条
  • [11] Human adipose-derived mesenchymal stem cells accelerate decellularized neobladder regeneration
    Moreno-Manzano, Victoria
    Mellado-Lopez, Maravillas
    Jose Morera-Esteve, Maria
    Alastrue-Agudo, Ana
    Bisbal-Velasco, Viviana
    Forteza-Vila, Jeronimo
    Serrano-Aroca, Angel
    David Vera-Donoso, Cesar
    REGENERATIVE BIOMATERIALS, 2020, 7 (02) : 161 - 169
  • [12] The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone
    Wang, Weiwei
    Kratz, Karl
    Behl, Marc
    Yan, Wan
    Liu, Yue
    Xu, Xun
    Baudis, Stefan
    Li, Zhengdong
    Kurtz, Andreas
    Lendlein, Andreas
    Ma, Nan
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2015, 61 (02) : 301 - 321
  • [13] Induction of Human Adipose-Derived Mesenchymal Stem Cells into Germ Lineage Using Retinoic Acid
    Liu, Haihui
    Chen, Mingtai
    Liu, Lulu
    Ren, Saisai
    Cheng, Panpan
    Zhang, Hao
    CELLULAR REPROGRAMMING, 2018, 20 (02) : 127 - 134
  • [14] Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration
    Lau, Chau Sang
    Park, So Yeon
    Ethiraj, Lalith Prabha
    Singh, Priti
    Raj, Grace
    Quek, Jolene
    Prasadh, Somasundaram
    Choo, Yen
    Goh, Bee Tin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [15] Single-cell transcriptomic sequencing analyses of cell heterogeneity during osteogenesis of human adipose-derived mesenchymal stem cells
    Qu, Rongmei
    He, Kai
    Fan, Tingyu
    Yang, Yuchao
    Mai, Liyao
    Lian, Zhiwei
    Zhou, Zhitao
    Peng, Yan
    Khan, Asmat Ullah
    Sun, Bing
    Huang, Xiaolan
    Ouyang, Jun
    Pan, Xinghua
    Dai, Jingxing
    Huang, Wenhua
    STEM CELLS, 2021, 39 (11) : 1478 - 1488
  • [16] Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells
    Lo Furno, Debora
    Mannino, Giuliana
    Cardile, Venera
    Parenti, Rosalba
    Giuffrida, Rosario
    STEM CELLS AND DEVELOPMENT, 2016, 25 (21) : 1615 - 1628
  • [17] REGENERATIVE AND IMMUNOMODULATORY PROPERTIES OF ADIPOSE-DERIVED MESENCHYMAL STEM CELLS
    Skalska, Urszula
    Kontny, Ewa
    POSTEPY BIOLOGII KOMORKI, 2011, 38 (03) : 363 - 378
  • [18] Biological effects of melatonin on human adipose-derived mesenchymal stem cells
    Heo, June Seok
    Pyo, Sangshin
    Lim, Ja-Yun
    Yoon, Dae Wui
    Kim, Bo Yong
    Kim, Jin-Hee
    Kim, Gi Jin
    Lee, Seung Gwan
    Kim, Jinkwan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 44 (06) : 2234 - 2244
  • [19] Induction of Mesenchymal to Endothelial Transformation of Adipose-Derived Stem Cells
    Colazzo, Francesca
    Chester, Adrian H.
    Taylor, Patricia M.
    Yacoub, Magdi H.
    JOURNAL OF HEART VALVE DISEASE, 2010, 19 (06) : 736 - 744
  • [20] Ultrastructural morphology of equine adipose-derived mesenchymal stem cells
    Pascucci, Luisa
    Mercati, Francesca
    Marini, Carla
    Ceccarelli, Piero
    Dall'Aglio, Cecilia
    Pedini, Vera
    Gargiulo, Anna Maria
    HISTOLOGY AND HISTOPATHOLOGY, 2010, 25 (10) : 1277 - 1285