On the Existence of Solutions for Anisotropic p→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}$$\end{document}-Laplacian Problems by the Variational Method

被引:0
作者
Armin Hadjian [1 ]
Stepan Tersian [2 ]
机构
[1] University of Science and Technology of Mazandaran,Department of Mathematics
[2] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
关键词
Anisotropic operator; nonlinear elliptic equations; variational methods; infinitely many solutions; 35A15; 35D30; 35J66;
D O I
10.1007/s00009-024-02747-5
中图分类号
学科分类号
摘要
The aim of this paper is to establish the existence of infinitely many solutions for a class of anisotropic p→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {p}$$\end{document}-Laplacian problems with Dirichlet boundary conditions, depending on two real parameters. These problems have a variational structure and some critical point theorems are applied. We also give an example to illustrate the obtained results.
引用
收藏
相关论文
共 21 条
[1]  
Amoroso E(2024)Anisotropic Commun. Anal. Mech. 16 1-23
[2]  
Sciammetta A(2004)-Laplacian problems with superlinear nonlinearities ESAIM Control Optim. Calc. Var. 10 28-52
[3]  
Winkert P(2016)The pseudo- Z. Anal. Anwend. 35 449-464
[4]  
Belloni M(2021)-Laplace eigenvalue problem and viscosity solutions as Adv. Differ. Equ. 26 229-258
[5]  
Kawohl B(2013)Two non-zero solutions for elliptic Dirichlet problems Nonlinear Differ. Equ. Appl. 20 1795-1830
[6]  
Bonanno G(2019)Existence of two positive solutions for anisotropic nonlinear elliptic equations Milan J. Math. 87 249-272
[7]  
D’Aguì G(2010)An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities, NoDEA Topol. Methods Nonlinear Anal. 35 367-378
[8]  
Bonanno G(1979)Existence results for some anisotropic singular problems via sub-supersolutions Beitr. Anal. 13 55-68
[9]  
D’Aguì G(1980)Nontrivial solutions of Beitr. Anal. 15 127-140
[10]  
Sciammetta A(2000)-superlinear anisotropic J. Comput. Appl. Math. 113 401-410