Determinants of Pseudo-laplacians and ζ(reg)(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta ^{(\textrm{reg})}(1)$$\end{document} for Spinor Bundles Over Riemann Surfaces

被引:0
作者
Alexey Kokotov [1 ]
Dmitrii Korikov [1 ]
机构
[1] Concordia University,
关键词
Riemann surfaces; Self-adjoint extensions; Dolbeaut laplacians; Robin mass; Primary 58J50; 58J52; Secondary 30F45; 32L05 35J05;
D O I
10.1007/s12220-024-01782-8
中图分类号
学科分类号
摘要
Let P be a point of a compact Riemann surface X. We study self-adjoint extensions of the Dolbeault Laplacians in hermitian line bundles L over X initially defined on sections with compact supports in X\{P}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\backslash \{P\}$$\end{document}. We define the ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-regularized determinants for these operators and derive comparison formulas for them. We introduce the notion of the Robin mass of L. This quantity enters the comparison formulas for determinants and is related to the regularized ζ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (1)$$\end{document} for the Dolbeault Laplacian. For spinor bundles of even characteristic, we find an explicit expression for the Robin mass. In addition, we propose an explicit formula for the Robin mass in the scalar case. Using this formula, we describe the evolution of the regularized ζ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (1)$$\end{document} for scalar Laplacian under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo result that the round metric minimizes the regularized ζ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (1)$$\end{document} for surfaces of genus zero.
引用
收藏
相关论文
共 20 条
[1]  
Aissiou T(2012)Determinants of pseudo-laplacians Math. Res. Lett. 19 1297-1308
[2]  
Hillairet L(1961)Remark on the Schrëdinger equation with singular potential Dokl. Akad. Nauk SSSR 137 1011-1014
[3]  
Kokotov A(1986)Spin-(1/2) bosonization on compact surfaces Phys. Rev. Lett. 57 795-798
[4]  
Berezin FA(1991)The Ricci flow on the 2-sphere J. Differ. Geom. 33 325-334
[5]  
Faddeev LD(1982)Pseudo-laplaciens. I Annales de l’institut Fourier 32 275-286
[6]  
Bost JB(1936)Sul moto dei neutroni nelle sostanze idrogenate. (On the Motion of Neutrons in Hydrogenous Substances) Ric. Scient. 7 13-52
[7]  
Nelson P(1988)The Ricci flow on surfaces Contemp. Math. 71 237-261
[8]  
Chow B(2006)The very unusual properties of the resolvent, heat kernel, and zeta-function for the operator J. Math. Phys. 8 47-225
[9]  
de Verdière YC(1997). Contemp. Math. 201 213-1031
[10]  
Fermi E(2009)Zeta functions on Commun. Math. Phys. 290 1025-1858