Robust query performance prediction for dense retrievers via adaptive disturbance generation

被引:0
作者
Saleminezhad, Abbas [1 ]
Arabzadeh, Negar [1 ,2 ]
Rad, Radin Hamidi [1 ]
Beheshti, Soosan [1 ]
Bagheri, Ebrahim [1 ]
机构
[1] Toronto Metropolitan Univ, Elect & Comp Engn Dept, Toronto, ON, Canada
[2] Univ Waterloo, Waterloo, ON, Canada
关键词
Information retrieval; Query performance prediction; Post-retrieval query performance prediction; and Dense neural retrievers;
D O I
10.1007/s10994-024-06659-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces ADG-QPP (Adaptive Disturbance Generation), an unsupervised Query Performance Prediction (QPP) method designed specifically for dense neural retrievers. The underlying foundation of ADG-QPP is to measure query performance based on its degree of robustness towards perturbations. Traditional QPP methods rely on predefined lexical perturbations on the query, which only apply to sparse retrieval methods and fail to maintain consistent performance across different datasets. In our work, we address these limitations by perturbing the query by injecting disturbance leveraged by the focal network-based measurements including node-based, edge-based, and cluster-based metrics, into its neural embedding representation. Rather than applying the same perturbation across all queries, our approach develops an instance-wise disturbance for each query that is then used for its perturbation. Through extensive experiments on three benchmark datasets, we demonstrate that ADG-QPP outperforms state-of-the-art baselines in terms of Kendall tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}, Spearman rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document}, and Pearson's rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document} correlations.
引用
收藏
页数:23
相关论文
共 52 条
[21]   Query-specific Variable Depth Pooling via Query Performance Prediction [J].
Ganguly, Debasis ;
Yilmaz, Emine .
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, :2303-2307
[22]   Performance Prediction for Non-Factoid Question Answering [J].
Hashemi, Helia ;
Zamani, Hamed ;
Croft, W. Bruce .
PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, :55-58
[23]  
Hauff C., 2008, CIKM
[24]  
Johnson J, 2021, IEEE T BIG DATA, V7, P535, DOI [10.1155/2019/4823791, 10.1109/TBDATA.2019.2921572]
[25]  
Jones K.S., 2000, INFORM PROCESS MANAG
[26]  
Lavrenko V., 2001, SIGIR SIGIR 01
[27]   Why are Normal Distributions Normal? [J].
Lyon, Aidan .
BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2014, 65 (03) :621-649
[28]   How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset [J].
Mackie, Iain ;
Dalton, Jeffrey ;
Yates, Andrew .
SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, :2335-2341
[29]   Effective Query Formulation in Conversation Contextualization : A Query Specificity-based Approach [J].
Pal, Dipasree ;
Ganguly, Debasis .
PROCEEDINGS OF THE 2021 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL, ICTIR 2021, 2021, :177-183
[30]  
Pérez-Iglesias J, 2010, LECT NOTES COMPUT SC, V6393, P207, DOI 10.1007/978-3-642-16321-0_21