Robust query performance prediction for dense retrievers via adaptive disturbance generation

被引:0
作者
Saleminezhad, Abbas [1 ]
Arabzadeh, Negar [1 ,2 ]
Rad, Radin Hamidi [1 ]
Beheshti, Soosan [1 ]
Bagheri, Ebrahim [1 ]
机构
[1] Toronto Metropolitan Univ, Elect & Comp Engn Dept, Toronto, ON, Canada
[2] Univ Waterloo, Waterloo, ON, Canada
关键词
Information retrieval; Query performance prediction; Post-retrieval query performance prediction; and Dense neural retrievers;
D O I
10.1007/s10994-024-06659-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces ADG-QPP (Adaptive Disturbance Generation), an unsupervised Query Performance Prediction (QPP) method designed specifically for dense neural retrievers. The underlying foundation of ADG-QPP is to measure query performance based on its degree of robustness towards perturbations. Traditional QPP methods rely on predefined lexical perturbations on the query, which only apply to sparse retrieval methods and fail to maintain consistent performance across different datasets. In our work, we address these limitations by perturbing the query by injecting disturbance leveraged by the focal network-based measurements including node-based, edge-based, and cluster-based metrics, into its neural embedding representation. Rather than applying the same perturbation across all queries, our approach develops an instance-wise disturbance for each query that is then used for its perturbation. Through extensive experiments on three benchmark datasets, we demonstrate that ADG-QPP outperforms state-of-the-art baselines in terms of Kendall tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}, Spearman rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document}, and Pearson's rho\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document} correlations.
引用
收藏
页数:23
相关论文
共 52 条
[1]  
Arabzadeh N., 2021, ECIR
[2]  
Arabzadeh N., 2020, ECIR
[3]   Unsupervised Question Clarity Prediction Through Retrieved Item Coherency [J].
Arabzadeh, Negar ;
Seifikar, Mahsa ;
Clarke, Charles L. A. .
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, :3811-3816
[4]   BERT-QPP: Contextualized Pre-trained Transformers for Query Performance Prediction [J].
Arabzadeh, Negar ;
Khodabakhsh, Maryam ;
Bagheri, Ebrahim .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, :2857-2861
[5]   Geometric Estimation of Specificity within Embedding Spaces [J].
Arabzadeh, Negar ;
Zarrinkalam, Fattane ;
Jovanovic, Jelena ;
Bagheri, Ebrahim .
PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, :2109-2112
[6]   Neural embedding-based specificity metrics for pre-retrieval query performance prediction [J].
Arabzadeh, Negar ;
Zarrinkalam, Fattane ;
Jovanovic, Jelena ;
Al-Obeidat, Feras ;
Bagheri, Ebrahim .
INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (04)
[7]  
Arabzadeh Negar, ICIKM
[8]  
Carlson A., 2002, McGraw-Hill Series in Electrical and Computer Engineering
[9]  
Carmel D, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P911
[10]  
Casella G., 2024, STAT INFERENCE