Cuscuton-like contribution to dark energy evolution

被引:0
|
作者
Bazeia, D. [1 ]
Dantas, J. D. [2 ]
da Costa, S. Santos [3 ,4 ,5 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
[2] Univ Fed Campina Grande, Unidade Academ Fis & Matemat, BR-58175000 Cuite, PB, Brazil
[3] Ist Nazl Fis Nucl INFN, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[4] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[5] Trento Inst Fundamental Phys & Applicat TIFPA, Via Sommarive 14, I-38123 Trento, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2025年 / 85卷 / 02期
关键词
BARYON ACOUSTIC-OSCILLATIONS; 1ST-ORDER FORMALISM; CONSTRAINTS; COSMOLOGY; SUPERNOVAE; SAMPLE;
D O I
10.1140/epjc/s10052-025-13855-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
This work deals with the presence of the cuscuton term in the otherwise standard dark energy evolution under the usual FLRW background. We disclose a first-order framework similar to the Hamilton-Jacobi formalism, which helps us to solve the equations of motion and find analytical solutions. We explore several possibilities, concentrating mainly on how the cuscuton-like contribution works to modify cosmic evolution. Some results are of current interest since they describe scenarios capable of changing the evolution, adding or excluding possible distinct phases during the Universe's expansion history. Additionally, we present interesting constraints on the cuscuton-like contribution for the dark energy evolution using a set of homogeneous geometrical observational probes. Finally, based on the Akaike Information Criterion (AIC), we perform a statistical comparison of the cuscuton-like model with Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM, and find strong support for our model.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Discerning dark energy models with high redshift standard candles
    Andersen, P.
    Hjorth, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (02) : 1413 - 1420
  • [22] Evidence for Emergent Dark Energy
    Li, Xiaoleisha
    Shafieloo, Arman
    ASTROPHYSICAL JOURNAL, 2020, 902 (01)
  • [23] The accelerating universe and dark energy
    Baltay, Charles
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (06):
  • [24] Dark energy by natural evolution: Constraining dark energy using Approximate Bayesian Computation
    Bernardo, Reginald Christian
    Grandon, Daniela
    Said, Jackson Levi
    Cardenas, Victor H.
    PHYSICS OF THE DARK UNIVERSE, 2023, 40
  • [25] Dark energy and dark matter from an additional adiabatic fluid
    Dunsby, Peter K. S.
    Luongo, Orlando
    Reverberi, Lorenzo
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [26] Testing dark energy with supernovae
    Kowalski, Marek
    ANNALEN DER PHYSIK, 2010, 19 (3-5) : 230 - 237
  • [27] Massive photon and dark energy
    Kouwn, Seyen
    Oh, Phillial
    Park, Chan-Gyung
    PHYSICAL REVIEW D, 2016, 93 (08)
  • [28] Cosmological model of the interaction between dark matter and dark energy
    Wang, J. S.
    Wang, F. Y.
    ASTRONOMY & ASTROPHYSICS, 2014, 564
  • [29] Observational tests of Gauss-Bonnet like dark energy model
    Molavi, Z.
    Khodam-Mohammadi, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06)
  • [30] In search of the dark matter dark energy interaction: a kinematic approach
    Mukherjee, Ankan
    Banerjee, Narayan
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (03)