Performance optimization of new generation R290 and R1234yf refrigerants: A response surface methodology approach

被引:0
|
作者
Pektezel, Oguzhan [1 ]
Ozdemir, Safiye Nur [2 ]
机构
[1] Univ Balikesir, Dept Mech Engn, TR-10145 Balikesir, Turkiye
[2] Univ Sakarya, Dept Mech Engn, TR-54050 Adapazari, Turkiye
关键词
Experimental refrigeration system; Central composite design; Response surface methodology; Desirability function approach; Optimization process; MULTIOBJECTIVE OPTIMIZATION; ENERGY PERFORMANCE; GWP MIXTURES; SYSTEM; R134A; REPLACEMENT; IMPROVEMENT; R404A; ALTERNATIVES; R513A;
D O I
10.1016/j.applthermaleng.2025.125927
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study aims to perform the parametric optimization of the R290 and R1234yf refrigerants in vapor compression refrigeration systems by employing the Response surface methodology (RSM) approach to obtain the best operating conditions. The input factors, including evaporator and condenser temperatures, are first determined, ranging from -12 to -4 degrees C and 30 to 40 degrees C, respectively. The objective functions are also identified, including compressor discharge temperature (Tdis), refrigerant mass flow rate (mref), compressor power consumption (Pcomp), and coefficient of performance (COP). Then, the central composite design (CCD) was performed to set out the experimental investigations. Response surface methodology and analysis of variance were utilized to detect the optimal levels and analyze the individual and combined interaction between each pair of input factors. The novelty of this study is in applying the RSM technique to develop second-order regression models and utilizing the desirability function approach for optimizing the refrigeration system. The deviations between the predicted and experimental values for the compressor discharge temperature, refrigerant mass flow rate, compressor power consumption, and COP are 0.256 %, 0.292 %, 0.724 %, and 0.169 %, respectively, representing that this method efficiently optimizes the performance of the R290 refrigerant. Similarly, the deviations between the predicted and experimental values for R1234yf are as follows: 0.272 %, 0.526 %, 0.980 %, and 1.069 %. From our knowledge, there have been very few optimization studies on the thermodynamic performance of refrigerants using the RSM tool, which reduces experimental costs and saves time.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Experimental and numerical investigation of thermal performances of R290 and R1234yf refrigerants in a cold room
    DAS, M. E. H. M. E. T.
    PEKTEZEL, O. G. U. Z. H. A. N.
    ALIC, E. R. D. E. M.
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2022, 28 (08) : 970 - 984
  • [2] Research on the Thermophysical Properties and Cycle Performances of R1234yf/R290 and R1234yf/R600a
    Zhang, Nuochen
    Li, Biao
    Feng, Linghao
    Dai, Yuande
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (08)
  • [3] Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles
    Kwon, Soonbum
    Lee, Dongchan
    Chung, Jun Yeob
    Maeng, Heegyu
    Kim, Yongchan
    ENERGY, 2024, 297
  • [4] Experimental comparison and optimal machine learning technique for predicting the thermo-hydraulic performance of Low-GWP refrigerants (R1234yf, R290, and R13I1/R290) during evaporation in plate heat exchanger
    Prabakaran, Rajendran
    Mohanraj, Thangamuthu
    Dhamodharan, Palanisamy
    Kim, Sung Chul
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 64
  • [5] Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives
    Sanchez, D.
    Cabello, R.
    Llopis, R.
    Arauzo, I.
    Catalan-Gil, J.
    Torrella, E.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 74 : 269 - 282
  • [6] Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)
    Bosnjakovic, Mladen
    Santa, Robert
    Katinic, Marko
    SUSTAINABILITY, 2023, 15 (11)
  • [7] R1234yf and R1234ze(E) as low-GWP refrigerants for residential heat pump water heaters
    Nawaz, Kashif
    Shen, Bo
    Elatar, Ahmed
    Baxter, Van
    Abdelaziz, Omar
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2017, 82 : 348 - 365
  • [8] A Regressive Model for Periodic Dynamic Instabilities during Condensation of R1234yf and R1234ze Refrigerants
    Kuczynski, Waldemar
    Kruzel, Marcin
    Chliszcz, Katarzyna
    ENERGIES, 2022, 15 (06)
  • [9] Performance analysis of refrigerants R134a and R1234yf two stage compression cycle with two condensers
    Wang, Hongli
    Tang, Qilong
    Jia, Ning
    Zhang, Qinghua
    MATERIALS PROCESSING AND MANUFACTURING III, PTS 1-4, 2013, 753-755 : 2778 - +
  • [10] Experimental and Numerical Studies on an Automobile Air Conditioning System With the Refrigerants R134a, R1234yf, and R1234ze(E)
    Gurudatt, H. M.
    Narasimham, G. S. V. L.
    Sadashive Gowda, B.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (01)