Robust design of reconfigurable intelligent surfaces for parameter estimation in MTC

被引:0
作者
Liesegang, Sergi [1 ,2 ]
Pascual-Iserte, Antonio [3 ]
Munoz, Olga [3 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn, I-03043 Cassino, Italy
[2] Consorzio Nazl Interuniv Telecomunicazioni, I-43124 Parma, Italy
[3] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
关键词
Machine-type communications; Reconfigurable intelligent surfaces; Parameter estimation; Imperfect channel knowledge; Successive interference cancelation; Finite blocklength; NONORTHOGONAL MULTIPLE-ACCESS; SUM-RATE MAXIMIZATION; OF-THE-ART; REFLECTING SURFACE; CHANNEL ESTIMATION; INTERFERENCE CANCELLATION; WIRELESS COMMUNICATIONS; ENERGY EFFICIENCY; MIMO CHANNELS; NOMA;
D O I
10.1186/s13638-025-02445-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a reconfigurable intelligent surface (RIS) to support parameter estimation in machine-type communications (MTC). We focus on a network where single-antenna sensors transmit spatially correlated measurements to a multiple-antenna collector node (CN) via non-orthogonal multiple access. We propose an estimation scheme based on the minimum mean square error (MMSE) criterion. We also integrate successive interference cancelation (SIC) at the receiver to mitigate communication failures in noisy and interference-prone channels under the finite blocklength (FBL) regime. Moreover, recognizing the importance of channel state information (CSI), we explore various methodologies for its acquisition at the CN. We statistically design the RIS configuration and SIC decoding order to minimize estimation error while accounting for channel temporal variations and short-packet lengths. To mirror practical systems, we incorporate the detrimental effects of FBL communication and imperfect CSI errors in our analysis. Simulations demonstrate that larger reflecting surfaces lead to smaller MSEs and underscore the importance of selecting an appropriate decoding order for accuracy and ultimate performance.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead
    Di Renzo, Marco
    Zappone, Alessio
    Debbah, Merouane
    Alouini, Mohamed-Slim
    Yuen, Chau
    de Rosny, Julien
    Tretyakov, Sergei
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) : 2450 - 2525
  • [42] A New Model of Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) for the Corresponding Quantization and Optimization
    Sun, Wenlong
    Sun, Shaohui
    Shi, Tong
    Su, Xin
    Liu, Rongke
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11521 - 11534
  • [43] Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment
    Trichopoulos, Georgios C.
    Theofanopoulos, Panagiotis
    Kashyap, Bharath
    Shekhawat, Aditya
    Modi, Anuj
    Osman, Tawfik
    Kumar, Sanjay
    Sengar, Anand
    Chang, Arkajyoti
    Alkhateeb, Ahmed
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 462 - 474
  • [44] On the Design of Broadbeam of Reconfigurable Intelligent Surface
    Lin, Xinyi
    Zhang, Lei
    Tukmanov, Anvar
    Liu, Yihong
    Abbasi, Qammer H.
    Imran, Muhammad Ali
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (05) : 3079 - 3094
  • [45] Unsynchronized Reconfigurable Intelligent Surfaces With Pulse-Width-Based Design
    Fathnan, Ashif Aminulloh
    Takimoto, Kairi
    Tanikawa, Mizuki
    Nakamura, Kazutomo
    Sugiura, Shinya
    Wakatsuchi, Hiroki
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 15103 - 15108
  • [46] Efficient DOA Estimation Method for Reconfigurable Intelligent Surfaces Aided UAV Swarm
    Chen, Peng
    Chen, Zhimin
    Zheng, Beixiong
    Wang, Xianbin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 743 - 755
  • [47] Multiple Residual Dense Networks for Reconfigurable Intelligent Surfaces Cascaded Channel Estimation
    Jin, Yu
    Zhang, Jiayi
    Huang, Chongwen
    Yang, Liang
    Xiao, Huahua
    Ai, Bo
    Wang, Zhiqin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2134 - 2139
  • [48] A survey on reconfigurable intelligent surfaces: Wireless communication perspective
    Hassouna, Saber
    Jamshed, Muhammad Ali
    Rains, James
    Kazim, Jalil ur Rehman
    Rehman, Masood Ur
    Abualhayja, Mohammad
    Mohjazi, Lina
    Cui, Tei Jun
    Imran, Muhammad Ali
    Abbasi, Qammer H.
    IET COMMUNICATIONS, 2023, 17 (05) : 497 - 537
  • [49] Beamforming Design in Vehicular Communication Systems With Multiple Reconfigurable Intelligent Surfaces: A Deep Learning Approach
    Saikia, Prajwalita
    Singh, Keshav
    Singh, Sandeep Kumar
    Huang, Wan-Jen
    Li, Chih-Peng
    Biswas, Sudip
    IEEE ACCESS, 2023, 11 : 100832 - 100844
  • [50] Machine Learning Approaches for Reconfigurable Intelligent Surfaces: A Survey
    Faisal, K. M.
    Choi, Wooyeol
    IEEE ACCESS, 2022, 10 : 27343 - 27367