Prediction of fresh and hardened concrete properties using machine learning algorithms

被引:0
|
作者
Chechani, Pranjal V. [1 ]
Kumar, Shashi Bhushan [2 ]
Chakraborty, Subhro [3 ]
Anand, Vishwajit [2 ]
Pal, Mahendra Kumar [2 ]
Ramaswamy, Ananth [1 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bengaluru 560012, India
[2] Indian Inst Technol BHU, Dept Civil Engn, Varanasi 221005, India
[3] Univ Engn & Management, Jaipur, India
关键词
Compressive strength; Slump; Back propagation neural network; Random forest model; Gradient boosting; HIGH-PERFORMANCE CONCRETE; COMPRESSIVE STRENGTH;
D O I
10.1007/s41062-024-01752-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete stands as the paramount construction material today, renowned for its exceptional moldability, strength, and durability. Its composition primarily involves cement, water, fine and coarse aggregates, with occasional mineral and chemical admixtures tailored for specific applications. Fresh concrete's workability, typically measured as slump, contrasts with hardened concrete, predominantly evaluated through compressive strength at 7 and 28 days. These key indicators, slump, and compressive strength, pivot on the properties and proportions of diverse concrete ingredients. Achieving concrete with requisite properties necessitates computing trial mix proportions based on ingredient properties utilizing codal provisions for mix design. Subsequently, samples prepared with these trial mixes undergo laborious and time-consuming laboratory testing. Hence, predicting these test outcomes becomes imperative to attain targeted concrete properties with minimal trials efficiently. This study employs varied machine learning algorithms to forecast concrete slump and compressive strength on the 7th and 28th day, leveraging input parameters concerning the properties and proportions of concrete ingredients. The dataset utilized in this investigation encompasses test data spanning a five-year program, encompassing training, cross-validation, and testing phases. Diverse machine learning models are deployed and evaluated based on their prediction accuracy to optimize concrete mix design. Use of diverse machine learning algorithms to predict properties of concrete using extensive input parameters, based on extensive experimental dataset form major scientific prowess of the present study.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Prediction of concrete coefficient of thermal expansion and other properties using machine learning
    Nilsen, Vanessa
    Pham, Le T.
    Hibbard, Michael
    Klager, Adam
    Cramer, Steven M.
    Morgan, Dane
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 220 : 587 - 595
  • [42] Response prediction of laced steel-concrete composite beams using machine learning algorithms
    Thirumalaiselvi, A.
    Verma, Mohit
    Anandavalli, N.
    Rajasankar, J.
    STRUCTURAL ENGINEERING AND MECHANICS, 2018, 66 (03) : 399 - 409
  • [43] Prediction of compressive strength of high-performance concrete (HPC) using machine learning algorithms
    Imran, Muhammad
    Raza, Ali
    Touqeer, Muhammad
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (03) : 1881 - 1894
  • [44] Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms
    Peng, Yiming
    Unluer, Cise
    RESOURCES CONSERVATION AND RECYCLING, 2023, 190
  • [45] Prediction of interface yield stress and plastic viscosity of fresh concrete using a hybrid machine learning approach
    The-Duong Nguyen
    Thu-Hien Tran
    Nhat-Duc Hoang
    ADVANCED ENGINEERING INFORMATICS, 2020, 44
  • [46] Intelligent prediction of comprehensive mechanical properties of recycled aggregate concrete with supplementary cementitious materials using hybrid machine learning algorithms
    Miao, Xu
    Zhu, Ji-Xiang
    Zhu, Wen-Biao
    Wang, Yuzhou
    Peng, Ligang
    Dong, Hao-Le
    Xu, Ling-Yu
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [47] Prediction of Diabetes Using Machine Learning Algorithms in Healthcare
    Sarwar, Muhammad Azeem
    Kamal, Nasir
    Hamid, Wajeeha
    Shah, Munam Ali
    2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 247 - 252
  • [48] Multiple disease prediction using Machine learning algorithms
    Arumugam K.
    Naved M.
    Shinde P.P.
    Leiva-Chauca O.
    Huaman-Osorio A.
    Gonzales-Yanac T.
    Materials Today: Proceedings, 2023, 80 : 3682 - 3685
  • [49] Diabetes Prediction Using Machine Learning Algorithms and Ontology
    El Massari H.
    Sabouri Z.
    Mhammedi S.
    Gherabi N.
    Journal of ICT Standardization, 2022, 10 (02): : 319 - 338
  • [50] Crop Prediction Model Using Machine Learning Algorithms
    Elbasi, Ersin
    Zaki, Chamseddine
    Topcu, Ahmet E.
    Abdelbaki, Wiem
    Zreikat, Aymen I.
    Cina, Elda
    Shdefat, Ahmed
    Saker, Louai
    APPLIED SCIENCES-BASEL, 2023, 13 (16):