Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation

被引:0
作者
Gao, Xin-Yi [1 ,2 ,3 ,4 ,5 ]
Chen, Xiu-Qing [6 ]
Guo, Yong-Jiang [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, ,Minist Educ, State Key Lab Informat Photon & Opt Commun, Key Lab Math & Informat Networks, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[4] North China Univ Technol, Beijing Key Lab Integrat & Anal Large Scale Stream, Beijing 100144, Peoples R China
[5] Beijing Municipal Educ Commiss, Beijing Lab New Energy Storage Technol, Beijing 102206, Peoples R China
[6] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic plasmas; Singular manifold; Symbolic computation; Variable-coefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation; B & auml; cklund transformation; Solitons; TRAVELING-WAVE SOLUTIONS; ION-ACOUSTIC-WAVES; CONSERVATION-LAWS; ELECTRONS; PHYSICS; LAYERS; MODEL;
D O I
10.1007/s12346-024-01200-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent manifold contributions have been made to the nonlinear partial differential equations in fluid mechanics, plasma astrophysics, optical fiber communication, chemistry, etc., while people have known that most of the baryonic matter in the Universe is believed to exist as the plasmas. Hereby, with symbolic computation, we investigate a variable-coefficient (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2\!\!+\!\!1)$$\end{document}-dimensional Zakharov-Kuznetsov-Burgers equation for such cosmic-plasma environments as the neutron stars/pulsar magnetospheres, relativistic jets from the nuclei of active galaxies and quasars, early Universe, center of the Milky Way, white dwarfs, planetary rings, comets, Earth's auroral zone, interstellar molecular clouds, circumstellar disks and Earth's ionosphere. Through a noncharacteristic movable singular manifold, auto-B & auml;cklund transformation and solitons are gotten for the electrostatic wave potential or low-frequency dust-ion-acoustic electrostatic potential, leaning upon such cosmic-plasma coefficient functions as the dispersion, nonlinearity and dissipation coefficients, which are related to, for example, the ion plasma frequency, ion cyclotron frequency, viscosity of the ion fluid, positron density, photoelectron density, electron density, ion temperature, electron temperature, mass of an ion, mass of a dust particle, and interaction frequency between the ions and dust particles.
引用
收藏
页数:31
相关论文
共 28 条
  • [21] Lie symmetry analysis and invariant solutions for (2+1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation
    Ali, Mohamed R.
    Ma, Wen-Xiu
    Sadat, R.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (03) : 248 - 254
  • [22] Hybrid-wave solutions for a (2<bold>+</bold>1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics
    Zhao, Yu
    Tian, Bo
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [23] Bright soliton interactions in a (2+1)-dimensional fourth-order variable-coefficient nonlinear Schrodinger equation for the Heisenberg ferromagnetic spin chain
    Yang, Chunyu
    Zhou, Qin
    Triki, Houria
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Liu, Wen-Jun
    Biswas, Anjan
    Belic, Milivoj
    NONLINEAR DYNAMICS, 2019, 95 (02) : 983 - 994
  • [24] Solitons, Backlund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation
    Lan, Zhong-Zhou
    Gao, Yi-Tian
    Yang, Jin-Wei
    Su, Chuan-Qi
    Zuo, Da-Wei
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (01): : 69 - 79
  • [25] Non-traveling lump solutions and mixed lump-kink solutions to (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation
    Wang, Jing
    An, Hong-Li
    Li, Biao
    MODERN PHYSICS LETTERS B, 2019, 33 (22):
  • [26] Multi-Waves, Breathers, Periodic and Cross-Kink Solutions to the (2+1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation
    Liu Dong
    Ju Xiaodong
    Ilhan, Onur Alp
    Manafian, Jalil
    Ismael, Hajar Farhan
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2021, 20 (01) : 35 - 44
  • [27] Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Backlund transformations, solitons and similarity reductions plus observational/experimental supports
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, : 1572 - 1592