Cosmic-Plasma Environment, Singular Manifold and Symbolic Computation for a Variable-Coefficient (2+1)-Dimensional Zakharov-Kuznetsov-Burgers Equation

被引:2
作者
Gao, Xin-Yi [1 ,2 ,3 ,4 ,5 ]
Chen, Xiu-Qing [6 ]
Guo, Yong-Jiang [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, ,Minist Educ, State Key Lab Informat Photon & Opt Commun, Key Lab Math & Informat Networks, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[4] North China Univ Technol, Beijing Key Lab Integrat & Anal Large Scale Stream, Beijing 100144, Peoples R China
[5] Beijing Municipal Educ Commiss, Beijing Lab New Energy Storage Technol, Beijing 102206, Peoples R China
[6] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Cosmic plasmas; Singular manifold; Symbolic computation; Variable-coefficient (2+1)-dimensional Zakharov-Kuznetsov-Burgers equation; B & auml; cklund transformation; Solitons; TRAVELING-WAVE SOLUTIONS; ION-ACOUSTIC-WAVES; CONSERVATION-LAWS; ELECTRONS; PHYSICS; LAYERS; MODEL;
D O I
10.1007/s12346-024-01200-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent manifold contributions have been made to the nonlinear partial differential equations in fluid mechanics, plasma astrophysics, optical fiber communication, chemistry, etc., while people have known that most of the baryonic matter in the Universe is believed to exist as the plasmas. Hereby, with symbolic computation, we investigate a variable-coefficient (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2\!\!+\!\!1)$$\end{document}-dimensional Zakharov-Kuznetsov-Burgers equation for such cosmic-plasma environments as the neutron stars/pulsar magnetospheres, relativistic jets from the nuclei of active galaxies and quasars, early Universe, center of the Milky Way, white dwarfs, planetary rings, comets, Earth's auroral zone, interstellar molecular clouds, circumstellar disks and Earth's ionosphere. Through a noncharacteristic movable singular manifold, auto-B & auml;cklund transformation and solitons are gotten for the electrostatic wave potential or low-frequency dust-ion-acoustic electrostatic potential, leaning upon such cosmic-plasma coefficient functions as the dispersion, nonlinearity and dissipation coefficients, which are related to, for example, the ion plasma frequency, ion cyclotron frequency, viscosity of the ion fluid, positron density, photoelectron density, electron density, ion temperature, electron temperature, mass of an ion, mass of a dust particle, and interaction frequency between the ions and dust particles.
引用
收藏
页数:31
相关论文
共 93 条
[41]  
Gupta RK, 2024, QUAL THEOR DYN SYST, V23, DOI 10.1007/s12346-024-00994-1
[42]   Alternative dust-ion acoustic waves in a magnetized charge varying dusty plasma with nonthermal electrons having a vortex-like velocity distribution [J].
Hadjaz, Idir ;
Tribeche, Mouloud .
ASTROPHYSICS AND SPACE SCIENCE, 2014, 351 (02) :591-598
[43]   ELECTRONS IN THE BOUNDARY-LAYERS NEAR THE DAYSIDE MAGNETOPAUSE [J].
HALL, DS ;
CHALONER, CP ;
BRYANT, DA ;
LEPINE, DR ;
TRITAKIS, VP .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A5) :7869-7891
[44]   Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation [J].
Han, Peng-Fei ;
Zhang, Yi .
CHAOS SOLITONS & FRACTALS, 2024, 184
[45]   Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional Sharma-Tasso-Olver-like equation [J].
Han, Peng-Fei ;
Zhang, Yi .
EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02)
[46]   Novel evolutionary behaviors of localized wave solutions and bilinear auto-Backlund transformations for the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation [J].
Han, Peng-Fei ;
Zhang, Yi ;
Jin, Chi-Hui .
NONLINEAR DYNAMICS, 2023, 111 (09) :8617-8636
[47]   Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation [J].
Han, Peng-Fei ;
Zhang, Yi .
NONLINEAR DYNAMICS, 2022, 109 (02) :1019-1032
[48]   Mathematical analysis of acoustic wave interaction of vibrating rigid plates with subsonic flows [J].
Hussain, Sajjad ;
Nawaz, Rab ;
Bibi, Aysha .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) :14156-14172
[49]   Diffraction of EM-wave by a finite symmetric plate in cold plasma with Neumann conditions [J].
Javaid, Ayesha ;
Ayub, Muhammad ;
Hussain, Sajjad ;
Haider, Sabih .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (04)
[50]   Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma [J].
Kaur, Barjinder ;
Saini, N. S. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (03) :215-223