Existence and stability of a one-dimensional heat equation with logarithmic nonlinearity

被引:0
作者
Sun, Cong [1 ]
Jiang, Yan Zhuo [1 ]
机构
[1] Jilin Univ Finance & Econ, Coll Appl Math, Changchun 130117, Jilin, Peoples R China
关键词
Heat equation; Global solution; Exponential stability; Exponential decay to zero; BLOW-UP;
D O I
10.1186/s13660-025-03269-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and stability of the solution for a class heat equation with logarithmic nonlinearity. Using the potential well method, we proved the existence of global solutions. Moreover, exponential stability and the rapid stabilization of solutions are obtained by energy and backstepping methods.
引用
收藏
页数:14
相关论文
共 19 条
[1]   A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients [J].
Argomedo, Federico Bribiesca ;
Prieur, Christophe ;
Witrant, Emmanuel ;
Bremond, Sylvain .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :290-303
[2]  
Barbu V., 2003, Abstract and Applied Analysis, V2003, P697, DOI 10.1155/S1085337503301010
[3]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[4]  
Cazenave T., 2010, Current Advances in Nonlinear Analysis and Related Topics, 13-23, V32
[5]   Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity [J].
Chen, Hua ;
Tian, Shuying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (12) :4424-4442
[6]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[7]   Stability of degenerate heat equation in non-cylindrical/cylindrical domain [J].
Gao, Hang ;
Li, Lingfei ;
Liu, Zhuangyi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04)
[8]   HEAT EQUATION WITH A NONLINEAR BOUNDARY CONDITION AND UNIFORMLY LOCAL Lr SPACES [J].
Ishige, Kazuhiro ;
Sato, Ryuichi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (05) :2627-2652
[9]   PDE backstepping control of one-dimensional heat equation with time-varying domain [J].
Izadi, Mojtaba ;
Abdollahi, Javad ;
Dubljevic, Stevan S. .
AUTOMATICA, 2015, 54 :41-48
[10]   Global Solution and Blow-up for a Class of p-Laplacian Evolution Equations with Logarithmic Nonlinearity [J].
Le, Cong Nhan ;
Xuan Truong Le .
ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) :149-169