Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

被引:0
|
作者
Wu, Mingzhu [1 ]
Huang, Niu [1 ,2 ]
Lv, Minghui [1 ]
Wang, Fengyi [1 ]
Ma, Fang [1 ]
Deng, Yihan [1 ]
Sun, Panpan [1 ]
Zheng, Yong [1 ]
Liu, Wei [1 ]
Ye, Liqun [1 ,3 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[2] Hubei Three Gorges Lab, Yichang 443007, Peoples R China
[3] China Three Gorges Univ, Engn Res Ctr Ecoenvironm Three Gorges Reservoir Re, Minist Educ, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
gel polymer electrolyte; hydrogel electrolyte; dual network; inorganic nanoparticles; zinc-air battery; ZN-AIR; POLYMER ELECTROLYTE; CONDUCTIVITY;
D O I
10.1007/s11705-025-2519-4
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries
    Dou, Haozhen
    Xu, Mi
    Zhang, Zhen
    Luo, Dan
    Yu, Aiping
    Chen, Zhongwei
    ADVANCED MATERIALS, 2024, 36 (29)
  • [32] Advanced quasi-solid-state lithium-sulfur batteries: A high-performance flexible LiTa2PO8-based hybrid solid electrolyte membrane with enhanced safety and efficiency
    Anbunathan, Ammaiyappan
    Walle, Kumlachew Zelalem
    Wu, She-Huang
    Wu, Yi-Shiuan
    Chang, Jeng-Kuei
    Jose, Rajan
    Yang, Chun-Chen
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [33] A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for NearNeutral Zinc-Air Batteries
    Qiu, Ke
    Wang, Fengmei
    Liao, Mochou
    Zhu, Kerun
    Chen, Jiawei
    Zhang, Wei
    Xia, Yongyao
    Dong, Xiaoli
    Wang, Fei
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (03)
  • [34] Nonflammable quasi-solid-state electrolyte for stable lithium-metal batteries
    Sun, Qiushi
    Chen, Xiao
    Xie, Jian
    Xu, Xiongwen
    Tu, Jian
    Zhang, Peng
    Zhao, Xinbing
    RSC ADVANCES, 2019, 9 (72) : 42183 - 42193
  • [35] Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc-Air Batteries
    Zhao, Nana
    Wu, Feng
    Xing, Yi
    Qu, Wenjie
    Chen, Nan
    Shang, Yanxin
    Yan, Mingxia
    Li, Yuejiao
    Li, Li
    Chen, Renjie
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) : 15537 - 15542
  • [36] Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution
    Chiku, Masanobu
    Tomita, Shoji
    Higuchi, Eiji
    Inoue, Hiroshi
    POLYMERS, 2011, 3 (04): : 1600 - 1606
  • [37] An asymmetric quasi-solid electrolyte for high-performance Li metal batteries
    Wang, Qian
    Wang, Hangchao
    Liu, Yong
    Wu, Kai
    Liu, Wen
    Zhou, Henghui
    CHEMICAL COMMUNICATIONS, 2020, 56 (52) : 7195 - 7198
  • [38] Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries
    Panneerselvam, Thamayanthi
    Rajamani, Arunkumar
    Janani, Narayanasamy
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    IONICS, 2023, 29 (04) : 1395 - 1406
  • [39] Promoting Bifunctional Oxygen Catalyst Activity of Double-Perovskite-Type Cubic Nanocrystallites for Aqueous and Quasi-Solid-State Rechargeable Zinc-Air Batteries
    Zhong, Yijun
    Xu, Xiaomin
    Su, Chao
    Tade, Moses Oludayo
    Shao, Zongping
    CATALYSTS, 2023, 13 (10)
  • [40] Construction and performance of PVDF-HFP-matrix comb-like gel copolymer electrolyte for high-performance quasi-solid-state lithium-metal batteries
    Yi, Lingguang
    Chen, Xiaoyi
    Zou, Changfei
    Liu, Jiali
    Cao, Xilin
    Tao, Xiyuan
    Zang, Zihao
    Zheng, Liping
    Liu, Li
    Wang, Xianyou
    JOURNAL OF ENERGY STORAGE, 2023, 68