Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

被引:0
|
作者
Wu, Mingzhu [1 ]
Huang, Niu [1 ,2 ]
Lv, Minghui [1 ]
Wang, Fengyi [1 ]
Ma, Fang [1 ]
Deng, Yihan [1 ]
Sun, Panpan [1 ]
Zheng, Yong [1 ]
Liu, Wei [1 ]
Ye, Liqun [1 ,3 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[2] Hubei Three Gorges Lab, Yichang 443007, Peoples R China
[3] China Three Gorges Univ, Engn Res Ctr Ecoenvironm Three Gorges Reservoir Re, Minist Educ, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
gel polymer electrolyte; hydrogel electrolyte; dual network; inorganic nanoparticles; zinc-air battery; ZN-AIR; POLYMER ELECTROLYTE; CONDUCTIVITY;
D O I
10.1007/s11705-025-2519-4
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Flexible ionic liquid aided "LAGP in PVDF" quasi-solid-state electrolyte for high performance and stable Li metal batteries
    Wei, Meng
    Zhai, Pengfei
    Li, Yihan
    Zhao, Xin
    Li, Jiancheng
    Zhang, Tao
    Liu, Guanghui
    Yu, Zhanjun
    Xu, Song
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 79 : 1278 - 1288
  • [22] Carboxymethyl chitosan modified double-skeleton hydrogel electrolyte enables high performance for flexible zinc-air batteries
    Liu, Zhe
    Chen, Lei
    Zhang, Xiaoliang
    Lu, Xiaojie
    Peng, Mao
    Wang, Chunxia
    Liu, Yong
    Zhang, Xiangwu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 303
  • [23] Advancements in Gel Electrolytes for High-Performance Zinc-Air Batteries to Stabilize Zinc Anodes
    Zhu, Yan
    Zheng, Dexu
    Xing, Xinxin
    Wu, Sajian
    Guo, Xiaojun
    Liu, Jishuang
    Guo, Xin
    Zhou, Jiaju
    Jiao, Yuxiao
    Zeng, Bin
    Wang, Nan
    Wan, Li
    Zhang, Haoxiang
    Liu, Shengzhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (17) : 7007 - 7025
  • [24] High-Performance transparent and flexible Zinc-Ion Solid-State batteries based on nanotube network and hydrogel electrolyte
    Sun, Nan
    Sun, Hongjin
    Tan, Dongchen
    Guo, Qinglei
    Zhang, Zhe
    Tao, Zhiyuan
    Fang, Chengcheng
    Bu, Jingyuan
    Huang, Jijie
    Jiang, Chengming
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [25] Tailoring Metal-Organic Frameworks and Derived Materials for High-Performance Zinc-Air and Alkaline Batteries
    Ashoori, Atefeh
    Noori, Abolhassan
    Rahmanifar, Mohammad S.
    Morsali, Ali
    Hassani, Nasim
    Neek-Amal, Mehdi
    Ghasempour, Hosein
    Xia, Xinhui
    Zhang, Yongqi
    El-Kady, Maher F.
    Kaner, Richard B.
    Mousavi, Mir F.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) : 30220 - 30239
  • [26] Molecular Reactivity and Interface Stability Modification in In-Situ Gel Electrolyte for High Performance Quasi-Solid-State Lithium Metal Batteries
    Wang, Qiyu
    Xu, Xiangqun
    Hong, Bo
    Bai, Maohui
    Li, Jie
    Zhang, Zhian
    Lai, Yanqing
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
  • [27] Maximizing the performance of aqueous zinc-air/iodide hybrid batteries through electrolyte composition optimization
    Assafrei, Juergen-Martin
    Yusibova, Gulnara
    Ping, Kefeng
    Piirsoo, Helle-Mai
    Tamm, Aile
    Kaarik, Maike
    Leis, Jaan
    Aruvali, Jaan
    Grozovski, Vitali
    Lust, Enn
    Kongi, Nadezda
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [28] A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries
    Zhang WenJing
    Li SenLin
    Zhang YuRong
    Wang XingHui
    Liu JingDong
    Zheng YuanHui
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (10) : 2369 - 2379
  • [29] Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state supercapacitors
    Yang, Hezhen
    Ji, Xiwei
    Tan, Yongtao
    Liu, Ying
    Ran, Fen
    JOURNAL OF POWER SOURCES, 2019, 441
  • [30] A high-performance carbon-carbon(C/C) Quasi-Solid-State Supercapacitor with Conducting Gel Electrolyte
    Wang, Dexuan
    Yu, Liangmin
    He, Benlin
    Wang, Lei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2530 - 2543