Multi-ancestry genome-wide association analyses: a comparison of meta- and mega-analyses in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study

被引:0
|
作者
Kuang, Alan [1 ]
Hivert, Marie-France [2 ,3 ,4 ,5 ]
Hayes, M. Geoffrey [6 ]
Lowe Jr, William L. [6 ]
Scholtens, Denise M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Prevent Med, Chicago, IL 60611 USA
[2] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
[3] Harvard Med Sch, Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[4] Univ Sherbrooke, Fac Med & Hlth Sci, Dept Med, Sherbrooke, PQ, Canada
[5] Ctr Hosp Univ Sherbrooke, Ctr Rech, Sherbrooke, PQ, Canada
[6] Northwestern Univ, Feinberg Sch Med, Dept Med, Chicago, IL USA
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
基金
美国国家卫生研究院;
关键词
Genome-wide association analysis; Multi-ancestry; Meta-analysis; Mega-analysis; GESTATIONAL DIABETES-MELLITUS; HARDY-WEINBERG EQUILIBRIUM; FASTING PLASMA-GLUCOSE; GENOTYPE IMPUTATION; GENETIC-VARIANTS; METAANALYSIS; DIVERSITY; MTNR1B; METABOLOME; DISEASE;
D O I
10.1186/s12864-025-11229-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThere is increasing need for effective incorporation of high-dimensional genetics data from individuals with varied ancestry in genome-wide association (GWAS) analyses. Classically, multi-ancestry GWAS analyses are performed using statistical meta-analysis to combine results conducted within homogeneous ancestry groups. The emergence of cosmopolitan reference panels makes collective preprocessing of GWAS data possible, but impact on downstream GWAS results in a mega-analysis framework merits investigation. We utilized GWAS data from the multi-national Hyperglycemia and Adverse Pregnancy Outcome Study to investigate differences in GWAS findings using a homogeneous ancestry meta-analysis versus a heterogeneous ancestry mega-analysis pipeline. Maternal fasting and 1-hr glucose and metabolomics measured during a 2-hr 75-gram oral glucose tolerance test during early third trimester pregnancy were evaluated as phenotypes.ResultsFor the homogeneous ancestry meta-analysis pipeline, variant data were prepared by identifying sets of individuals with similar ancestry and imputing to ancestry-specific reference panels. GWAS was conducted within each ancestry group and results were combined using random-effects meta-analysis. For the heterogeneous ancestry mega-analysis pipeline, data for all individuals were collectively imputed to the Trans-Omics for Precision Medicine (TOPMed) cosmopolitan reference panel, and GWAS was conducted using a unified mega-analysis. The meta-analysis pipeline identified genome-wide significant associations for 15 variants in a region close to GCK on chromosome 7 with maternal fasting glucose and no significant findings for 1-hr glucose. Associations in this same region were identified using the mega-analysis pipeline, along with a well-documented association at MTNR1B on chromosome 11 with both fasting and 1-hr maternal glucose. For metabolomics analyses, the number of significant findings in the heterogeneous ancestry mega-analysis far exceeded those from the homogeneous ancestry meta-analysis and confirmed many previously documented associations, but genomic inflation factors were much more variable.ConclusionsFor multi-ancestry GWAS, heterogeneous ancestry mega-analysis generates a rich set of variants for analysis using a cosmopolitan reference panel and results in vastly more significant, biologically credible and previously documented associations than a homogeneous ancestry meta-analysis approach. Genomic inflation factors do indicate that findings from the mega-analysis pipeline may merit cautious interpretation and further follow-up.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genome-Wide Association Study of Pre-Eclampsia Detects Novel Maternal Single Nucleotide Polymorphisms and Copy-Number Variants in Subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study Cohort
    Zhao, Linlu
    Bracken, Michael B.
    DeWan, Andrew T.
    ANNALS OF HUMAN GENETICS, 2013, 77 : 277 - 287
  • [32] Multi-ancestry genome-wide association study of bipolar disorder reveals novel insights into the genetic architecture and biological underpinnings
    Andreassen, Ole A.
    BIPOLAR DISORDERS, 2023, 25 : 12 - 12
  • [33] Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes
    Pervjakova, Natalia
    Moen, Gunn-Helen
    Borges, Maria-Carolina
    Ferreira, Teresa
    Cook, James P.
    Allard, Catherine
    Beaumont, Robin N.
    Canouil, Mickael
    Hatem, Gad
    Heiskala, Anni
    Joensuu, Anni
    Karhunen, Ville
    Kwak, Soo Heon
    Lin, Frederick T. J.
    Liu, Jun
    Rifas-Shiman, Sheryl
    Tam, Claudia H.
    Tam, Wing Hung
    Thorleifsson, Gudmar
    Andrew, Toby
    Auvinen, Juha
    Bhowmik, Bishwajit
    Bonnefond, Amelie
    Delahaye, Fabien
    Demirkan, Ayse
    Froguel, Philippe
    Haller-Kikkatalo, Kadri
    Hardardottir, Hildur
    Hummel, Sandra
    Hussain, Akhtar
    Kajantie, Eero
    Keikkala, Elina
    Khamis, Amna
    Lahti, Jari
    Lekva, Tove
    Mustaniemi, Sanna
    Sommer, Christine
    Tagoma, Aili
    Tzala, Evangelia
    Uibo, Raivo
    Vaarasmaki, Marja
    Villa, Pia M.
    Birkeland, Kare, I
    Bouchard, Luigi
    Duijn, Cornelia M.
    Finer, Sarah
    Groop, Leif
    Hamalainen, Esa
    Hayes, Geoffrey M.
    Hitman, Graham A.
    HUMAN MOLECULAR GENETICS, 2022, 31 (19) : 3377 - 3391
  • [34] Multi-ancestry meta-analysis of genome-wide association studies discovers 67 new loci associated with chronic back pain
    Stanaway, Ian B.
    Suri, Pradeep
    Afari, Niloofar
    Dochtermann, Daniel
    Gerstenberger, Armand
    Pyarajan, Saiju
    Rosen, Eric J.
    Gasperi, Marianna
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [35] Multi-Ancestry Meta-Analysis of Genome-Wide Association Studies Identifies over 200 Novel Genomic Loci for Diverticular Disease
    Neylan, Christopher
    Roberson, Jeffrey L.
    Kim, Alyson
    Walker, Venexia
    Damrauer, Scott M.
    Levin, Michael
    Maguire, Lillias H.
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2023, 237 (05) : S82 - S83
  • [36] Gene discovery and biological insights into anxiety disorders from a large-scale multi-ancestry genome-wide association study
    Friligkou, Eleni
    Lokhammer, Solveig
    Cabrera-Mendoza, Brenda
    Shen, Jie
    He, Jun
    Deiana, Giovanni
    Zanoaga, Mihaela Diana
    Asgel, Zeynep
    Pilcher, Abigail
    Di Lascio, Luciana
    Makharashvili, Ana
    Koller, Dora
    Tylee, Daniel S.
    Pathak, Gita A.
    Polimanti, Renato
    NATURE GENETICS, 2024, 56 (10)
  • [37] Multi-ancestry genome-wide association study of 4069 children with glioma identifies 9p21.3 risk locus
    Foss-Skiftesvik, Jon
    Li, Shaobo
    Rosenbaum, Adam
    Hagen, Christian Munch
    Stoltze, Ulrik Kristoffer
    Ljungqvist, Sally
    Hjalmars, Ulf
    Schmiegelow, Kjeld
    Morimoto, Libby
    de Smith, Adam J.
    Mathiasen, Rene
    Metayer, Catherine
    Hougaard, David
    Melin, Beatrice
    Walsh, Kyle M.
    Bybjerg-Grauholm, Jonas
    Dahlin, Anna M.
    Wiemels, Joseph L.
    NEURO-ONCOLOGY, 2023, 25 (09) : 1709 - 1720
  • [38] Genome-wide association study implicates lipid pathway dysfunction in antipsychotic-induced weight gain: multi-ancestry validation
    Liao, Yundan
    Yu, Hao
    Zhang, Yuyanan
    Lu, Zhe
    Sun, Yaoyao
    Guo, Liangkun
    Guo, Jing
    Kang, Zhewei
    Feng, Xiaoyang
    Sun, Yutao
    Wang, Guishan
    Su, Zhonghua
    Lu, Tianlan
    Yang, Yongfeng
    Li, Wenqiang
    Lv, Luxian
    Yan, Hao
    Zhang, Dai
    Yue, Weihua
    MOLECULAR PSYCHIATRY, 2024, 29 (6) : 1857 - 1868
  • [39] Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications
    Levey, Daniel F.
    Galimberti, Marco
    Deak, Joseph D.
    Wendt, Frank R.
    Bhattacharya, Arjun
    Koller, Dora
    Harrington, Kelly M.
    Quaden, Rachel
    Johnson, Emma C.
    Gupta, Priya
    Biradar, Mahantesh
    Lam, Max
    Cooke, Megan
    Rajagopal, Veera M.
    Empke, Stefany L. L.
    Zhou, Hang
    Nunez, Yaira Z.
    Kranzler, Henry R.
    Edenberg, Howard J.
    Agrawal, Arpana
    Smoller, Jordan W.
    Lencz, Todd
    Hougaard, David M.
    Borglum, Anders D.
    Demontis, Ditte
    Gaziano, J. Michael
    Gandal, Michael J.
    Polimanti, Renato
    Stein, Murray B.
    Gelernter, Joel
    NATURE GENETICS, 2023, 55 (12) : 2094 - 2103
  • [40] Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications
    Daniel F. Levey
    Marco Galimberti
    Joseph D. Deak
    Frank R. Wendt
    Arjun Bhattacharya
    Dora Koller
    Kelly M. Harrington
    Rachel Quaden
    Emma C. Johnson
    Priya Gupta
    Mahantesh Biradar
    Max Lam
    Megan Cooke
    Veera M. Rajagopal
    Stefany L. L. Empke
    Hang Zhou
    Yaira Z. Nunez
    Henry R. Kranzler
    Howard J. Edenberg
    Arpana Agrawal
    Jordan W. Smoller
    Todd Lencz
    David M. Hougaard
    Anders D. Børglum
    Ditte Demontis
    J. Michael Gaziano
    Michael J. Gandal
    Renato Polimanti
    Murray B. Stein
    Joel Gelernter
    Nature Genetics, 2023, 55 : 2094 - 2103