Comparative transcriptome and metabolome analysis reveals the differential response to salinity stress of two genotypes brewing sorghum

被引:0
|
作者
Zhou, Wei [1 ]
Wang, Zhen Guo [2 ]
Li, Yan [2 ]
Wu, Guo Jiang [1 ]
Li, Mo [2 ]
Deng, Zhi Lan [2 ]
Cui, Feng Juan [2 ]
Xu, Qing Quan [2 ]
Li, Yimeng [1 ]
Zhou, Ya Xing [1 ,3 ]
机构
[1] Inner Mongolia Minzu Univ, Agr Coll, Tongliao 028000, Inner Mongolia, Peoples R China
[2] Tongliao Agr & Anim Husb Res Inst, Tongliao 028000, Inner Mongolia, Peoples R China
[3] Inner Mongolia Minzu Univ, Agr Coll, 996 Xilamulun Str, Tongliao 028000, Inner Mongolia, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Brewing sorghum; Salinity tolerance; Transcriptome; Metabolome; Transcription factor; SALT STRESS; TOLERANCE; DROUGHT; COLD; ACID; GENE;
D O I
10.1038/s41598-025-87100-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salinity tolerance in brewing sorghum is a very important trait, especially in areas that are affected by soil salinity. In order to elucidate the mechanism underlying salt tolerance, we conducted a comparative analysis of the transcriptome and metabolome in two distinct sweet sorghum genotypes, namely the salt-tolerant line NY1298 and the salt-sensitive line MY1176, following exposure to salt treatment. Our initial findings indicate the presence of genotype-specific responses in brewing sorghum under salt stress conditions. Notably, there were variations in the expression of genes and metabolites among different genotypes in response to high-salt stress. Specifically, certain transcription factors belonging to the WRKY, MYB, and NAC families were identified as being involved in the response to increased external salinity. WGCNA analysis identified stage-specific gene expression for different salinity gradients in each cultivar, and explored the gene function by KEGG enrichment analysis. Combined analysis of DEGs and DEMs in hormone synthesis found AUX/IAA, SAUR, CRE1, A-ARR, PP2C, SNRK2 genes, and 3-indoleacetic acid and jasmonic acid were evidently differential expression among different salt concentrations. Taken together, our study carried out a comprehensive overview of two genotypes of brewing sorghum gene and metabolite expression differences in response to salt stress, and expanded the understanding of responsive mechanism of brewing sorghum to salt stress.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress
    Wang, Rong
    Wang, Xi
    Liu, Kuan
    Zhang, Xue-Jie
    Zhang, Luo-Yan
    Fan, Shou-Jin
    PLANTS-BASEL, 2020, 9 (04):
  • [42] Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress
    Postnikova, Olga A.
    Shao, Jonathan
    Nemchinov, Lev G.
    PLANT AND CELL PHYSIOLOGY, 2013, 54 (07) : 1041 - 1055
  • [43] Transcriptome and metabolome analysis reveals key genes and secondary metabolites of Casuarina equisetifolia ssp. incana in response to drought stress
    Zhang, Shike
    He, Chunmei
    Wei, Long
    Jian, Shuguang
    Liu, Nan
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [44] Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress
    Pibiao Shi
    Minfeng Gu
    BMC Plant Biology, 20
  • [45] Comparative Transcriptome Analysis of Two Contrasting Chinese Cabbage (Brassica rapa L.) Genotypes Reveals That Ion Homeostasis Is a Crucial Biological Pathway Involved in the Rapid Adaptive Response to Salt Stress
    Li, Na
    Zhang, Zhihuan
    Chen, Zijing
    Cao, Bili
    Xu, Kun
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [46] Comparative Metabolome and Transcriptome Analysis of Rapeseed (Brassica napus L.) Cotyledons in Response to Cold Stress
    Liu, Xinhong
    Wang, Tonghua
    Ruan, Ying
    Xie, Xiang
    Tan, Chengfang
    Guo, Yiming
    Li, Bao
    Qu, Liang
    Deng, Lichao
    Li, Mei
    Liu, Chunlin
    PLANTS-BASEL, 2024, 13 (16):
  • [47] Transcriptome Analysis Reveals Complex Defensive Mechanisms in Salt-Tolerant and Salt-Sensitive Shrub Willow Genotypes under Salinity Stress
    Sui, Dezong
    Wang, Baosong
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [48] Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity
    Zhang, Kun
    Cui, Huiting
    Li, Mingna
    Xu, Yi
    Cao, Shihao
    Long, Ruicai
    Kang, Junmei
    Wang, Kehua
    Hu, Qiannan
    Sun, Yan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 194
  • [49] Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress
    Li, Qian
    Ma, Changkun
    Tai, Huanhuan
    Qiu, Huan
    Yang, An
    PLOS ONE, 2020, 15 (12):
  • [50] Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress
    Mohasseli, Taher
    Rahmani, Razgar Seyed
    Darvishzadeh, Reza
    Dezhsetan, Sara
    Marchal, Kathleen
    CEREAL RESEARCH COMMUNICATIONS, 2022, 50 (04) : 797 - 810