We give a complete classification of torsion pairs in repetitive cluster categories of type An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_n$$\end{document}, which were defined by Zhu (Comm Algebra 39:2437–2448, 2011) as the orbit categories Db(modKAn)/⟨(τ-1[1])p⟩\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D^b(\mathop {\textrm{mod}}\nolimits KA_n)/\langle (\tau ^{-1}[1])^p\rangle $$\end{document}, via certain configurations of diagonals, called Ptolemy diagrams. As applications, we classify rigid subcategories of Db(modKAn)/⟨(τ-1[1])p⟩\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D^b(\mathop {\textrm{mod}}\nolimits KA_n)/\langle (\tau ^{-1}[1])^p\rangle $$\end{document}, which gives Lamberti’s classification of cluster tilting subcategories (Lamberti in J Algebra Appl 13:1350091, 2014). When p=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=1$$\end{document}, this generalizes the work of Holm, Jørgensen and Rubey for the classification of torsion pairs in cluster categories of type An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{n}$$\end{document} (Holm et al., J. Algebraic Combin 34:507–523, 2011).