List Dynamic 4-Coloring of Planar Graphs

被引:0
作者
Kim, Seog-Jin [1 ]
Lee, Sang June [2 ]
Lian, Xiaopan [3 ,4 ]
Zhu, Xuding [5 ]
机构
[1] Konkuk Univ, Dept Math Educ, Seoul, South Korea
[2] Kyung Hee Univ, Coll Sci, Dept Math, Seoul, South Korea
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Peoples R China
基金
新加坡国家研究基金会;
关键词
Dynamic coloring; list coloring; list dynamic coloring; planar graph; plane graph; COLORINGS;
D O I
10.1007/s00373-024-02867-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a list assignment L of a graph G, a dynamicL-coloring of G is a proper vertex L-coloring of G such that for each vertex u of degree at least 2, the set N(u) of neighbors of u is not monochromatic. For positive integers k, s and t, a (k, s, t)-list assignment of a plane graph G is a list assignment L such that (i) |L(v)|>= k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(v)|\ge k$$\end{document} for each vertex v of G, (ii) |L(x)boolean AND L(y)|<= s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(x)\cap L(y)|\le s$$\end{document} for each edge xy of G, and (iii) |L(v)boolean AND L(w)|<= t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(v)\cap L(w)|\le t$$\end{document} if there is a vertex u such that v, u, w are three consecutive vertices on the boundary of a face. We say that a plane graph G is dynamically (k, s, t)-choosable if G is dynamically L-colorable for any (k, s, t)-list assignment L of G. We show that every plane graph is dynamically (4, 2, 2)-choosable. We also show that & Scaron;krekovski's conjecture about the (3,1)-choosability is equivalent to the statement that all plane graphs are dynamically (3,1,1)-choosable.
引用
收藏
页数:6
相关论文
共 20 条
[1]   On the list dynamic coloring of graphs [J].
Akbari, S. ;
Ghanbari, M. ;
Jahanbekam, S. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) :3005-3007
[2]   On the dynamic coloring of graphs [J].
Alishahi, Meysam .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (2-3) :152-156
[3]   Graph r-hued colorings-A survey [J].
Chen, Ye ;
Fan, Suohai ;
Lai, Hong-Jian ;
Xu, Murong .
DISCRETE APPLIED MATHEMATICS, 2022, 321 :24-48
[4]   On dynamic coloring for planar graphs and graphs of higher genus [J].
Chen, Ye ;
Fan, Suohai ;
Lai, Hong-Jian ;
Song, Huimin ;
Sun, Lei .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1064-1071
[5]  
Erdos P., 1979, C NUMERANTUM, P125
[6]   Dynamic list coloring of bipartite graphs [J].
Esperet, Louis .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (17) :1963-1965
[7]   On r-dynamic coloring of graphs [J].
Jahanbekam, Sogol ;
Kim, Jaehoon ;
Suil, O. ;
West, Douglas B. .
DISCRETE APPLIED MATHEMATICS, 2016, 206 :65-72
[8]   List 3-dynamic coloring of graphs with small maximum average degree [J].
Kim, Seog-Jin ;
Park, Boram .
DISCRETE MATHEMATICS, 2018, 341 (05) :1406-1418
[9]   Dynamic coloring and list dynamic coloring of planar graphs [J].
Kim, Seog-Jin ;
Lee, Sang June ;
Park, Won-Jin .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :2207-2212
[10]  
Kim SJ, 2011, LECT NOTES COMPUT SC, V6831, P156, DOI 10.1007/978-3-642-22616-8_13