Process-chemistry intensification using non-thermal plasmas: Toward one-step chemical production

被引:2
作者
Kamarinopoulou, Nefeli S. [1 ]
Nguyen, Darien K. [1 ]
Vlachos, Dionisios G. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
关键词
Decarbonization; Electrification; Non-thermal plasma; One-step; DIRECT CONVERSION; HYDROGEN;
D O I
10.1016/j.cogsc.2025.100997
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Decarbonizing the chemical industry requires process electrification. Non-thermal plasmas present an electrification altermodularity, fast dynamics, and compatibility with renewable energy sources. Their most remarkable quality is the nonequilibrium state between molecules and high-energy electrons, enabling molecular activation at mild conditions. Unlike chemical manufacturing constrained by thermal activation, limiting feedstock options and necessitating multistep prostep) chemical synthesis. We highlight the potential of plasmas from the perspective of process-chemistry intensification.
引用
收藏
页数:7
相关论文
共 34 条
[1]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[2]   One-step direct conversion of methane to methanol with water in non-thermal plasma [J].
Bi, Wenfei ;
Tang, Yu ;
Li, Xuemei ;
Dai, Chengyi ;
Song, Chunshan ;
Guo, Xinwen ;
Ma, Xiaoxun .
COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
[3]   Oxygenate Production from Plasma-Activated Reaction of CO2 and Ethane [J].
Biswas, Akash N. ;
Winter, Lea R. ;
Loenders, Bjoern ;
Xie, Zhenhua ;
Bogaerts, Annemie ;
Chen, Jingguang G. .
ACS ENERGY LETTERS, 2022, 7 (01) :236-241
[4]   Direct Conversion of Ethane to Oxygenates, Ethylene, and Hydrogen in a Noncatalytic Biphasic Plasma Microreactor [J].
Cameli, Fabio ;
Dimitrakellis, Panagiotis ;
Vlachos, Dionisios G. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (21) :8003-8008
[5]   Modular Plasma Microreactor for Intensified Hydrogen Peroxide Production [J].
Cameli, Fabio ;
Dimitrakellis, Panagiotis ;
Chen, Tai-Ying ;
Vlachos, Dionisios G. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (05) :1829-1838
[6]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[7]   Recent advances towards aqueous hydrogen peroxide formation in a direct current plasma-liquid system [J].
Chen, Qiang ;
Li, Junshuai ;
Chen, Qiang ;
Ostrikov, Kostya .
HIGH VOLTAGE, 2022, 7 (03) :405-419
[8]   Analysis of the production mechanism of H2O2 in water treated by helium DC plasma jets [J].
Chen, Zeyu ;
Liu, Dingxin ;
Chen, Chen ;
Xu, Dehui ;
Liu, Zhijie ;
Xia, Wenjie ;
Rong, Mingzhe ;
Kong, Michael G. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (32)
[9]  
Cresko J, 2022, United States, DOI 10.2172/1961393
[10]   Electrified chemical reactors for methane-to-ethylene conversion [J].
Delikonstantis, Evangelos ;
Cameli, Fabio ;
Stefanidis, Georgios .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 41