Uncovering gene and cellular signatures of immune checkpoint response via machine learning and single-cell RNA-seq

被引:0
作者
Pinhasi, Asaf [1 ]
Yizhak, Keren [1 ,2 ]
机构
[1] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Dept Cell Biol & Canc Sci, Haifa, Israel
[2] Technion Israel Inst Technol, Taub Fac Comp Sci, Haifa, Israel
基金
以色列科学基金会;
关键词
BLOCKADE; IMMUNOTHERAPY; ACTIVATION;
D O I
10.1038/s41698-025-00883-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune checkpoint inhibitors have transformed cancer therapy. However, only a fraction of patients benefit from these treatments. The variability in patient responses remains a significant challenge due to the intricate nature of the tumor microenvironment. Here, we harness single-cell RNA-sequencing data and employ machine learning to predict patient responses while preserving interpretability and single-cell resolution. Using a dataset of melanoma-infiltrated immune cells, we applied XGBoost, achieving an initial AUC score of 0.84, which improved to 0.89 following Boruta feature selection. This analysis revealed an 11-gene signature predictive across various cancer types. SHAP value analysis of these genes uncovered diverse gene-pair interactions with non-linear and context-dependent effects. Finally, we developed a reinforcement learning model to identify the most informative single cells for predictivity. This approach highlights the power of advanced computational methods to deepen our understanding of cancer immunity and enhance the prediction of treatment outcomes.
引用
收藏
页数:16
相关论文
共 66 条
[21]  
He B, 2022, BIOCOMPUT-PAC SYM, P337
[22]   T-cell activation -: CCL3 and CCL4 actively recruit CD8+ T cells [J].
Honey, K .
NATURE REVIEWS IMMUNOLOGY, 2006, 6 (06) :427-427
[23]   Subsets of IFN Signaling Predict Response to Immune Checkpoint Blockade in Patients with Melanoma [J].
Horowitch, Brooke ;
Lee, Daniel Y. ;
Ding, Min ;
Martinez-Morilla, Sandra ;
Aung, Thazin Nwe ;
Ouerghi, Feriel ;
Wang, Xueting ;
Wei, Wei ;
Damsky, William ;
Sznol, Mario ;
Kluger, Harriet ;
Rimm, David L. ;
Ishizuka, Jeffrey J. .
CLINICAL CANCER RESEARCH, 2023, 29 (15) :2908-2918
[24]   Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response [J].
Jiang, Peng ;
Gu, Shengqing ;
Pan, Deng ;
Fu, Jingxin ;
Sahu, Avinash ;
Hu, Xihao ;
Li, Ziyi ;
Traugh, Nicole ;
Bu, Xia ;
Li, Bo ;
Liu, Jun ;
Freeman, Gordon J. ;
Brown, Myles A. ;
Wucherpfennig, Kai W. ;
Liu, X. Shirley .
NATURE MEDICINE, 2018, 24 (10) :1550-+
[25]   Deep neural network modeling identifies biomarkers of response to immune-checkpoint therapy [J].
Kang, Yuqi ;
Vijay, Siddharth ;
Gujral, Taranjit S. .
ISCIENCE, 2022, 25 (05)
[26]  
Ke GL, 2017, ADV NEUR IN, V30
[27]   Boruta - A System for Feature Selection [J].
Kursa, Miron B. ;
Jankowski, Aleksander ;
Rudnicki, Witold R. .
FUNDAMENTA INFORMATICAE, 2010, 101 (04) :271-286
[28]   Expression of STAT1 is positively correlated with PD-L1 in human ovarian cancer [J].
Liu, Fangran ;
Liu, Jiao ;
Zhang, Jinguo ;
Shi, Jimin ;
Gui, Lu ;
Xu, Guoxiong .
CANCER BIOLOGY & THERAPY, 2020, 21 (10) :963-971
[29]   PLEK2 and IFI6, representing mesenchymal and immune-suppressive microenvironment, predicts resistance to neoadjuvant immunotherapy in esophageal squamous cell carcinoma [J].
Liu, Jianhua ;
Chen, Hao ;
Qiao, Guibin ;
Zhang, Jia-Tao ;
Zhang, Shuaitong ;
Zhu, Changbin ;
Chen, Yu ;
Tang, Jiming ;
Li, Weiwei ;
Wang, Siyun ;
Tian, Hongxia ;
Chen, Zhihong ;
Ma, Dong ;
Tian, Jie ;
Wu, Yi-Long .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2023, 72 (04) :881-893
[30]   Machine Learning of Single Cell Transcriptomic Data From anti-PD-1 Responders and Non-responders Reveals Distinct Resistance Mechanisms in Skin Cancers and PDAC [J].
Liu, Ryan ;
Dollinger, Emmanuel ;
Nie, Qing .
FRONTIERS IN GENETICS, 2022, 12