Buckling and free vibration analyses of functionally graded timoshenko nanobeams resting on elastic foundation

被引:0
|
作者
Tang, Yuan [1 ]
Bian, Peiliang [2 ]
Qing, Hai [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Aerosp Struct, Nanjing 210016, Peoples R China
[2] Hohai Univ, Dept Engn Mech, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method (FEM); Stress-driven two-phase local/nonlocal elasticity; Timoshenko beam; Size-dependent elastic foundation; NONLOCAL INTEGRAL MODEL; FINITE-ELEMENT-ANALYSIS; STRAIN GRADIENT THEORY; STRESS-DRIVEN; NANO-BEAMS; EULER-BERNOULLI; FORMULATION; FORM; NANOTECHNOLOGY; NANOSCALE;
D O I
10.1007/s40435-025-01614-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the present work, a novel nonlocal finite element model is presented for functionally graded (FG) Timoshenko nanobeams resting on a size-dependent elastic foundation. In contrast to the previous major studies, the size-dependent effects of both nanobeam and elastic foundation are taken into account simultaneously and modeled with the equivalent stress-driven two-phase local/nonlocal differential model equipped with two constitutive boundary conditions. The weak form of governing equations is derived and the higher-order variables in the additional external forces are eliminated with the aid of the constitutive boundary conditions. A finite element formulation based on the differential nonlocal constitutive relations is developed for buckling and free vibration analysis of FG nanobeams. Several comparative studies are conducted to verify the efficiency and accuracy of the proposed nonlocal finite element method (FEM). Considering the nonlocality of the elastic foundation, the effects of two-phase local/nonlocal elasticity on critical buckling load and vibration frequency of FG Timoshenko nanobeam are investigated in detail with different gradient index, nonlocal parameter, local volume fraction and buckling as well as vibration orders under different boundary conditions.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Free vibration and wave propagation of axially moving functionally graded Timoshenko microbeams
    Yao, L. Q.
    Ji, C. J.
    Shen, J. P.
    Li, C.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (03)
  • [22] Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams
    Xiao, Wan-shen
    Gao, Yang
    Zhu, Haiping
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2019, 25 (06): : 2451 - 2470
  • [23] Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment
    Fang, Jianshi
    Zheng, Shuo
    Xiao, Jianqiang
    Zhang, Xiaopeng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 106
  • [24] On the Bending and Vibration Analysis of Functionally Graded Magneto-Electro-Elastic Timoshenko Microbeams
    Hong, Jun
    Wang, Shaopeng
    Zhang, Gongye
    Mi, Changwen
    CRYSTALS, 2021, 11 (10)
  • [25] Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation
    El-Borgi, Sami
    Fernandes, Ralston
    Reddy, J. N.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 77 : 348 - 363
  • [26] Forced Vibration Analysis of Functionally Graded Nanobeams
    Akbas, Seref Doguscan
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (07)
  • [27] A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation
    Pham, Quoc-Hoa
    Tran, Van Ke
    Tran, Trung Thanh
    Nguyen-Thoi, Trung
    Nguyen, Phu-Cuong
    Pham, Van Dong
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [28] Free Vibration Analysis of Functionally Graded Timoshenko Beams with Variable Section
    Du Y.
    Cheng P.
    Zhou F.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (05): : 55 - 62
  • [29] Free vibration of nonlocal Timoshenko beams made of functionally graded materials by Symplectic method
    Zhang, Kai
    Ge, Meng-Hua
    Zhao, Cheng
    Deng, Zi-Chen
    Xu, Xiao-Jian
    COMPOSITES PART B-ENGINEERING, 2019, 156 : 174 - 184
  • [30] Free Vibration Analysis of Multiple Cracked Functionally Graded Timoshenko Beams
    Tran Van Lien
    Ngo Trong Duc
    Nguyen Tien Khiem
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2017, 14 (09): : 1752 - 1766