Rankin-Cohen type differential operators on Hermitian modular forms

被引:0
作者
Dunn, Francis [1 ]
机构
[1] Univ Oregon, Dept Math, 1021 E 13th, Eugene, OR 97403 USA
关键词
Rankin-Cohen brackets; Hermitian modular forms; Automorphic forms; REPRESENTATIONS; JACOBI; VALUES;
D O I
10.1007/s40993-024-00576-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct Rankin-Cohen type differential operators on Hermitian modular forms of signature (n, n). The bilinear differential operators given here specialize to the original Rankin-Cohen operators in the case n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document}, and more generally satisfy some analogous properties, including uniqueness. Our approach builds on previous work by Eholzer-Ibukiyama in the case of Siegel modular forms, together with results of Kashiwara-Vergne on the representation theory of unitary groups.
引用
收藏
页数:23
相关论文
共 17 条