GTAT: empowering graph neural networks with cross attention

被引:0
作者
Shen, Jiahao [1 ]
Ain, Qura Tul [1 ]
Liu, Yaohua [1 ]
Liang, Banqing [1 ]
Qiang, Xiaoli [2 ]
Kou, Zheng [1 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Graph learning; Graph neural networks; Network topology; Cross attention mechanism;
D O I
10.1038/s41598-025-88993-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graph Neural Networks (GNNs) serve as a powerful framework for representation learning on graph-structured data, capturing the information of nodes by recursively aggregating and transforming the neighboring nodes' representations. Topology in graph plays an important role in learning graph representations and impacts the performance of GNNs. However, current methods fail to adequately integrate topological information into graph representation learning. To better leverage topological information and enhance representation capabilities, we propose the Graph Topology Attention Networks (GTAT). Specifically, GTAT first extracts topology features from the graph's structure and encodes them into topology representations. Then, the representations of node and topology are fed into cross attention GNN layers for interaction. This integration allows the model to dynamically adjust the influence of node features and topological information, thus improving the expressiveness of nodes. Experimental results on various graph benchmark datasets demonstrate GTAT outperforms recent state-of-the-art methods. Further analysis reveals GTAT's capability to mitigate the over-smoothing issue, and its increased robustness against noisy data.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Polarized Graph Neural Networks
    Fang, Zheng
    Xu, Lingjun
    Song, Guojie
    Long, Qingqing
    Zhang, Yingxue
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1404 - 1413
  • [42] Convolutional Graph Neural Networks
    Gama, Fernando
    Marques, Antonio G.
    Leus, Geert
    Ribeiro, Alejandro
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 452 - 456
  • [43] ConveXplainer for Graph Neural Networks
    Pereira, Tamara A.
    Nascimento, Erik Jhones F.
    Mesquita, Diego
    Souza, Amauri H.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 588 - 600
  • [44] Survey on Graph Neural Networks
    Gkarmpounis, Georgios
    Vranis, Christos
    Vretos, Nicholas
    Daras, Petros
    IEEE ACCESS, 2024, 12 : 128816 - 128832
  • [45] Graph Neural Networks for Joint Communication and Sensing Optimization in Vehicular Networks
    Li, Xuefei
    Chen, Mingzhe
    Liu, Yuchen
    Zhang, Zhilong
    Liu, Danpu
    Mao, Shiwen
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (12) : 3893 - 3907
  • [46] Beyond graph neural networks with lifted relational neural networks
    Gustav Šourek
    Filip Železný
    Ondřej Kuželka
    Machine Learning, 2021, 110 : 1695 - 1738
  • [47] Beyond graph neural networks with lifted relational neural networks
    Sourek, Gustav
    Zelezny, Filip
    Kuzelka, Ondrej
    MACHINE LEARNING, 2021, 110 (07) : 1695 - 1738
  • [48] Clenshaw Graph Neural Networks
    Guo, Yuhe
    Wei, Zhewei
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 614 - 625
  • [49] AGGREGATION GRAPH NEURAL NETWORKS
    Gama, Fernando
    Marques, Antonio G.
    Ribeiro, Alejandro
    Leus, Geert
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4943 - 4947
  • [50] Graph Neural Networks for Routing Optimization: Challenges and Opportunities
    Jiang, Weiwei
    Han, Haoyu
    Zhang, Yang
    Wang, Ji'an
    He, Miao
    Gu, Weixi
    Mu, Jianbin
    Cheng, Xirong
    SUSTAINABILITY, 2024, 16 (21)