Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments

被引:2
|
作者
Hao, Shuang [1 ,2 ]
Guthrie, Brian [3 ]
Kim, Soo-Kyung [4 ]
Balanda, Sergej [5 ]
Kubicek, Jan [5 ]
Murtaza, Babar [6 ]
Khan, Naim A. [6 ]
Khakbaz, Pouyan [3 ]
Su, Judith [1 ,2 ]
Goddard, William A., III [4 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Cargill Inc, Global Core Res & Dev Grp, 14800 28th Ave N, Plymouth, MN 55447 USA
[4] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
[5] Cube Biotech, Creat Campus Monheim,Creat Campus Allee 12, D-40789 Monheim, Germany
[6] Univ Bourgogne, UB Ctr Translat & Mol Med CTM 1231, Physiol Nutr & Toxicol, F-21000 Dijon, France
来源
COMMUNICATIONS CHEMISTRY | 2024年 / 7卷 / 01期
关键词
MOLECULAR-MECHANISM; ACTIVATION MECHANISM; ACCURATE DOCKING; RATE CONSTANTS; PROTEIN; T1R3; DYNAMICS; DOMAIN; CELLS; IDENTIFICATION;
D O I
10.1038/s42004-024-01324-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the G alpha protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor. Sucrose and other non-caloric sweeteners can bind to different domains of the heterodimeric sweet taste receptor (T1R2/T1R3), resulting in different levels of sweetness. Here, the authors investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites of T1R2/T1R3 through binding experiments and computational docking studies, revealing multiple binding sites for the tested ligands and structural- function correlations of ligand-receptor interactions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Novel umami-enhancing peptides of beef M. Semimembranosus hydrolysates and interactions with the T1R1/T1R3 taste receptor
    Lee, Dongheon
    Kim, Hye-Jin
    Jo, Cheorun
    FOOD CHEMISTRY, 2025, 463
  • [22] Identifying Umami Peptides Specific to the T1R1/T1R3 Receptor via Phage Display
    Li, Mingyang
    Zhang, Xiaoyu
    Zhu, Yiwen
    Zhang, Xiancheng
    Cui, Zhiyong
    Zhang, Ninglong
    Sun, Yue
    Yang, Zhiying
    Wang, Wenli
    Wang, Cunli
    Zhang, Yin
    Liu, Yuan
    Qing, Guangyan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (31) : 12004 - 12014
  • [23] Recombinant expression and tryptophan-assisted analysis of human sweet taste receptor T1R3's extracellular domain in sweetener interaction studies
    Jin, Soo-Bin
    Kim, Hyun-A
    Shin, Ji-Ae
    Jung, Na-Hee
    Park, Seo-Young
    Hong, Sungguan
    Kong, Kwang-Hoon
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2024, 54 (09): : 1196 - 1203
  • [24] Differential scanning fluorimetric analysis of the amino-acid binding to taste receptor using a model receptor protein, the ligand-binding domain of fish T1r2a/T1r3
    Yoshida, Takashi
    Yasui, Norihisa
    Kusakabe, Yuko
    Ito, Chiaki
    Akamatsu, Miki
    Yamashita, Atsuko
    PLOS ONE, 2019, 14 (10):
  • [25] Isolation and characterization of novel umami peptides from bay scallop (Argopecten irradians) and molecular docking to the T1R1/T1R3 taste receptor
    Chang, Liyang
    Zhang, Xiuzheng
    Zhang, Zhiqin
    Cai, Fangyuan
    Yu, Hui
    Lin, Dong
    Liu, Haimei
    Zhao, Qin
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2024, 207
  • [26] Novel Umami Peptides from Hypsizygus marmoreus and Interaction with Umami Receptor T1R1/T1R3
    Dong, Xiaobo
    Wan, Chao
    Huang, Aiyun
    Xu, Huaide
    Lei, Hongjie
    FOODS, 2023, 12 (04)
  • [27] Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice
    Sclafani, Anthony
    Glass, Damien S.
    Margolskee, Robert F.
    Glendinning, John I.
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2010, 299 (06) : R1643 - R1650
  • [28] Chronic restraint stress in rats suppresses sweet and umami taste responses and lingual expression of T1R3 mRNA
    Okamoto, Atsuhiro
    Miyoshi, Michio
    Imoto, Toshiaki
    Ryoke, Kazuo
    Watanabe, Tatsuo
    NEUROSCIENCE LETTERS, 2010, 486 (03) : 211 - 214
  • [29] Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy
    Assadi-Porter, Fariba M.
    Tonelli, Marco
    Maillet, Emeline L.
    Markley, John L.
    max, Marianna
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (02): : 82 - 86
  • [30] Phenoxy Herbicides and Fibrates Potently Inhibit the Human Chemosensory Receptor Subunit T1R3
    Maillet, Emeline L.
    Margolskee, Robert F.
    Mosinger, Bedrich
    JOURNAL OF MEDICINAL CHEMISTRY, 2009, 52 (21) : 6931 - 6935