Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments

被引:2
|
作者
Hao, Shuang [1 ,2 ]
Guthrie, Brian [3 ]
Kim, Soo-Kyung [4 ]
Balanda, Sergej [5 ]
Kubicek, Jan [5 ]
Murtaza, Babar [6 ]
Khan, Naim A. [6 ]
Khakbaz, Pouyan [3 ]
Su, Judith [1 ,2 ]
Goddard, William A., III [4 ]
机构
[1] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Biomed Engn, Tucson, AZ 85721 USA
[3] Cargill Inc, Global Core Res & Dev Grp, 14800 28th Ave N, Plymouth, MN 55447 USA
[4] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
[5] Cube Biotech, Creat Campus Monheim,Creat Campus Allee 12, D-40789 Monheim, Germany
[6] Univ Bourgogne, UB Ctr Translat & Mol Med CTM 1231, Physiol Nutr & Toxicol, F-21000 Dijon, France
来源
COMMUNICATIONS CHEMISTRY | 2024年 / 7卷 / 01期
关键词
MOLECULAR-MECHANISM; ACTIVATION MECHANISM; ACCURATE DOCKING; RATE CONSTANTS; PROTEIN; T1R3; DYNAMICS; DOMAIN; CELLS; IDENTIFICATION;
D O I
10.1038/s42004-024-01324-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the G alpha protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor. Sucrose and other non-caloric sweeteners can bind to different domains of the heterodimeric sweet taste receptor (T1R2/T1R3), resulting in different levels of sweetness. Here, the authors investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites of T1R2/T1R3 through binding experiments and computational docking studies, revealing multiple binding sites for the tested ligands and structural- function correlations of ligand-receptor interactions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Distinct Human and Mouse Membrane Trafficking Systems for Sweet Taste Receptors T1r2 and T1r3
    Shimizu, Madoka
    Goto, Masao
    Kawai, Takayuki
    Yamashita, Atsuko
    Kusakabe, Yuko
    PLOS ONE, 2014, 9 (07):
  • [2] Interaction Between Umami Peptide and Taste Receptor T1R1/T1R3
    Dang, Yali
    Gao, Xinchang
    Xie, Aiying
    Wu, Xueqian
    Ma, Fumin
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2014, 70 (03) : 1841 - 1848
  • [3] Systematic analysis reveals novel insight into the molecular determinants of function, diversity and evolution of sweet taste receptors T1R2/T1R3 in primates
    Wang, Congrui
    Liu, Yi
    Cui, Meng
    Liu, Bo
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [4] Oxaliplatin Alters Expression of T1R2 Receptor and Sensitivity to Sweet Taste in Rats
    Ohishi, Akihiro
    Nishida, Kentaro
    Yamanaka, Yuri
    Miyata, Ai
    Ikukawa, Akiko
    Yabu, Miharu
    Miyamoto, Karin
    Bansho, Saho
    Nagasawa, Kazuki
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2016, 39 (04) : 578 - 586
  • [5] Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins
    Liu, Bo
    Ha, Matthew
    Meng, Xuan-Yu
    Khaleduzzaman, Mohammed
    Zhang, Zhe
    Li, Xia
    Cui, Meng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 427 (02) : 431 - 437
  • [6] The structure features of umami hexapeptides for the T1R1/T1R3 receptor
    Yu, Xiaqin
    Zhang, Lujia
    Miao, Xiaodan
    Li, Yanyu
    Liu, Yuan
    FOOD CHEMISTRY, 2017, 221 : 599 - 605
  • [7] Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor)
    Toda, Yasuka
    Nakagita, Tomoya
    Hayakawa, Takashi
    Okada, Shinji
    Narukawa, Masataka
    Imai, Hiroo
    Ishimaru, Yoshiro
    Misaka, Takumi
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (52) : 36863 - 36877
  • [8] Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium
    Harrington, Elizabeth O.
    Vang, Alexander
    Braza, Julie
    Shil, Aparna
    Chichger, Havovi
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2018, 314 (01) : L165 - L176
  • [9] Mouse neutrophils express functional umami taste receptor T1R1/T1R3
    Lee, NaHye
    Jung, Young Su
    Lee, Ha Young
    Kang, NaNa
    Park, Yoo Jung
    Hwang, Jae Sam
    Bahk, Young Yil
    Koo, JaeHyung
    Bae, Yoe-Sik
    BMB REPORTS, 2014, 47 (11) : 649 - 654
  • [10] Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon
    Kendig, Derek M.
    Hurst, Norman R.
    Bradley, Zachary L.
    Mahavadi, Sunila
    Kuemmerle, John F.
    Lyall, Vijay
    DeSimone, John
    Murthy, Karnam S.
    Grider, John R.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2014, 307 (11): : G1100 - G1107