A Quantitative Second Order Sobolev Regularity for (inhomogeneous) Normalized p(•)-Laplace Equations

被引:0
作者
Wang, Yuqing [1 ]
Zhou, Yuan [2 ]
机构
[1] Beihang Univ, Dept Math, Beijing 102206, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized p(x)-Laplacian; strong p(x)-Laplacian; second order regularity; quasiregular mapping; TUG-OF-WAR; VISCOSITY SOLUTIONS; HOLDER REGULARITY; WEAK SOLUTIONS; EQUIVALENCE; DERIVATIVES; PROOF;
D O I
10.1007/s10114-025-3356-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain of R-n with n >= 2 and p(center dot) be a local Lipschitz funcion in Omega with 1 < p(x) < infinity in Omega. We build up an interior quantitative second order Sobolev regularity for the normalized p(center dot)-Laplace equation -Delta(N)(p(center dot))u = 0 in Omega as well as the corresponding inhomogeneous equation -Delta(N)(p(center dot))u =f in Omega with f is an element of C-0(Omega). In particular, given any viscosity solution u to -Delta(N)(p(center dot))u = 0 in Omega, we prove the following: (i) in dimension n = 2, for any subdomain U (sic) Omega and any beta >= 0, one has divided by Du divided by beta Du is an element of L(loc)2+delta (U) with a quantitative upper bound, and moreover, the map (x(1),x(2))->|Du|(beta)(u(x1),-u(x2)) is quasiregular in U in the sense that |D[|Du|(beta)Du]|(2)<=-CdetD[|Du|(beta)Du]a.e.inU. (ii)in dimension n >= 3, for any subdomain U (sic) Omega with inf(U) p(x) > 1 and supUp(x)<3+2n-2, one has D(2)u is an element of L-loc(2+delta) (U) with a quantitative upper bound, and also with a pointwise upper bound |D(2)u|(2)<=-C Sigma(1 <= i<j <= n)[u(xixj)u(xjxi)-u(xixi)u(xjxj)]a.e in U. Here constants delta > 0 and C >= 1 are independent of u. These extend the related results obtaind by Adamowicz-H & auml;st & ouml; [Mappings of finite distortion and PDE with nonstandard growth. Int. Math. Res. Not. IMRN, 10, 1940-1965 (2010)] when n = 2 and beta = 0.
引用
收藏
页码:99 / 121
页数:23
相关论文
共 41 条
[1]   Harnack's inequality and the strong p(.)-Laplacian [J].
Adamowicz, Tomasz ;
Hasto, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) :1631-1649
[2]   Mappings of Finite Distortion and PDE with Nonstandard Growth [J].
Adamowicz, Tomasz ;
Hasto, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) :1940-1965
[3]  
[Anonymous], 1968, Zap. Na. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
[4]  
ARONSSON G, 1989, MANUSCRIPTA MATH, V66, P73
[5]   TUG-OF-WAR GAMES WITH VARYING PROBABILITIES AND THE NORMALIZED p(x)-LAPLACIAN [J].
Arroyo, Angel ;
Heino, Joonas ;
Parviainen, Mikko .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) :915-944
[6]   Remarks on regularity for p-Laplacian type equations in non-divergence form [J].
Attouchi, Amal ;
Ruosteenoja, Eero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) :1922-1961
[7]   C1,α regularity for the normalized p-Poisson problem [J].
Attouchi, Amal ;
Parviainen, Mikko ;
Ruosteenoja, Eero .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04) :553-591
[8]   Regularity for radial solutions of degenerate fully nonlinear equations [J].
Birindelli, I. ;
Demengel, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) :6237-6249
[9]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[10]  
BOJARSKI B, 1987, PARTIAL DIFFERENTIAL, V19, P25