Combining transfer and ensemble learning models for image and text aspect-based sentiment analysis

被引:0
作者
Chauhan, Amit [1 ]
Mohana, Rajni [1 ,2 ]
机构
[1] Jaypee Univ Informat Technol JUIT, Dept Comp Sci & Engn & Informat Technol, Solan 173234, Himachal Prades, India
[2] Amity Univ Punjab, Amity Sch Engn & Technol, Mohali 140306, Punjab, India
关键词
Sentiment analysis; Ensemble; Multimodal; Boosting technique; FUSION NETWORK; CLASSIFICATION;
D O I
10.1007/s13198-025-02713-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multimodal Aspect-Based Sentiment Analysis (MABSA) is a rapidly evolving field, essential for understanding emotions across different data types like text and images. By analyzing sentiments from multiple sources, MABSA holds great potential for diverse real-world applications such as social media monitoring and customer feedback analysis. This study introduces a novel approach that leverages both machine learning and deep learning techniques to improve sentiment interpretation at a fine-grained level, enabling more precise emotional insights from multimodal data. Our approach integrates a Light Gradient Boosting Machine with advanced models, including Transformer-XL Network (XLNet), Bidirectional Encoder Representations from Transformers (BERT), and its optimized variant, RoBERTa. This hybrid model significantly enhances the accuracy and robustness of aspect-based sentiment analysis. Evaluations on the Twitter 2015 dataset achieved an accuracy of 80.52% and an F1-measure of 76.42%. Further testing on the Twitter 2017 dataset resulted in an accuracy of 73.85% and an F1-measure of 72.68%. These results demonstrate the effectiveness of our method, highlighting its potential for more comprehensive sentiment analysis across multiple modalities.
引用
收藏
页码:1001 / 1019
页数:19
相关论文
共 41 条
[1]  
Abonizio Hugo Queiroz, 2022, IEEE Transactions on Artificial Intelligence, V3, P657, DOI 10.1109/TAI.2021.3114390
[2]   Interpretable Multimodal Sentiment Classification Using Deep Multi-View Attentive Network of Image and Text Data [J].
Al-Tameemi, Israa Khalaf Salman ;
Feizi-Derakhshi, Mohammad-Reza ;
Pashazadeh, Saeid ;
Asadpour, Mohammad .
IEEE ACCESS, 2023, 11 :91060-91081
[3]   BERT-Based Model for Aspect-Based Sentiment Analysis for Analyzing Arabic Open-Ended Survey Responses: A Case Study [J].
Alshaikh, Khloud A. ;
Almatrafi, Omaima A. ;
Abushark, Yoosef B. .
IEEE ACCESS, 2024, 12 :2288-2302
[4]   Transformer-Based Feature Fusion Approach for Multimodal Visual Sentiment Recognition Using Tweets in the Wild [J].
Alzamzami, Fatimah ;
Saddik, Abdulmotaleb El .
IEEE ACCESS, 2023, 11 :47070-47079
[5]   Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A Comparative Evaluation [J].
Alzamzami, Fatimah ;
Hoda, Mohamad ;
El Saddik, Abdulmotaleb .
IEEE ACCESS, 2020, 8 (08) :101840-101858
[6]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805, 10.48550/arXiv.1810.04805]
[7]   Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification [J].
Dong, Min ;
Li, Yongfa ;
Tang, Xue ;
Xu, Jingyun ;
Bi, Sheng ;
Cai, Yi .
IEEE ACCESS, 2020, 8 :16174-16186
[8]  
El-Amier YA, 2024, EGYPT J CHEM, V67, P543, DOI [10.21608/EJCHEM.2023.215077.8080, 10.21608/ejchem.2023.217283.8130, 10.21608/EJCHEM.2023.214824.8073, 10.21608/EJCHEM.2023.217364.8134, 10.21608/ejchem.2023.213597.8029, 10.21608/ejchem.2023.214813.8066, 10.21608/EJCHEM.2023.215078.8081, 10.21608/ejchem.2023.213590.8026, 10.21608/EJCHEM.2023.214816.8067, 10.21608/EJCHEM.2023.215080.8082, 10.21608/ejchem.2023.213591.8027, 10.21608/EJCHEM.2023.214819.8069, 10.21608/EJCHEM.2023.214811.8065, 10.21608
[9]  
Fan FF, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3433
[10]   Position Perceptive Multi-Hop Fusion Network for Multimodal Aspect-Based Sentiment Analysis [J].
Fan, Hao ;
Chen, Junjie .
IEEE ACCESS, 2024, 12 :90586-90595