Looking outside the box with a pathology aware AI approach for analyzing OCT retinal images in Stargardt disease

被引:0
作者
Khateri, Parisa [1 ,4 ]
Koottungal, Tiana [1 ]
Wong, Damon [1 ,2 ]
Strauss, Rupert W. [1 ,3 ,6 ,7 ]
Janeschitz-Kriegl, Lucas [1 ,4 ]
Pfau, Maximilian [4 ,8 ,9 ]
Schmetterer, Leopold [1 ,2 ,5 ,12 ,13 ,14 ,15 ,16 ,17 ]
Scholl, Hendrik P. N. [5 ,10 ,11 ]
机构
[1] Inst Mol & Clin Ophthalmol Basel, Basel, Switzerland
[2] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore
[3] Med Univ Graz, Dept Ophthalmol, Graz, Austria
[4] Univ Basel, Dept Ophthalmol, Basel, Switzerland
[5] Med Univ Vienna, Dept Clin Pharmacol, Vienna, Austria
[6] Univ Coll London Hosp NHS Fdn Trust, London, England
[7] UCL, UCL Inst Ophthalmol, London, England
[8] Univ Bonn, Dept Ophthalmol, Bonn, Germany
[9] F Hoffmann La Roche Pharmaceut AG, Basel, Switzerland
[10] Pallas Kliniken AG, Pallas Klin Zurich, Zurich, Switzerland
[11] European Vis Inst, Basel, Switzerland
[12] SERI NTU Adv Ocular Engn STANCE Program, Singapore, Singapore
[13] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program Eye ACP, Singapore, Singapore
[14] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore, Singapore
[15] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[16] Fdn Ophtalmol Adolphe Rothschild, Paris, France
[17] Aier Hosp Grp, Changsha, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
英国惠康基金; 新加坡国家研究基金会; 瑞士国家科学基金会; 英国医学研究理事会;
关键词
Stargardt Disease; Optical Coherence Tomography; Deep Learning; Retina Segmentation; Pathology-Aware Loss Function; Automated Image Analysis; SEGMENTATION;
D O I
10.1038/s41598-025-85213-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stargardt disease type 1 (STGD1) is a genetic disorder that leads to progressive vision loss, with no approved treatments currently available. The development of effective therapies faces the challenge of identifying appropriate outcome measures that accurately reflect treatment benefits. Optical Coherence Tomography (OCT) provides high-resolution retinal images, serving as a valuable tool for deriving potential outcome measures, such as retinal thickness. However, automated segmentation of OCT images, particularly in regions disrupted by degeneration, remains complex. In this study, we propose a deep learning-based approach that incorporates a pathology-aware loss function to segment retinal sublayers in OCT images from patients with STGD1. This method targets relatively unaffected regions for sublayer segmentation, ensuring accurate boundary delineation in areas with minimal disruption. In severely affected regions, identified by a box detection model, the total retina is segmented as a single layer to avoid errors. Our model significantly outperforms standard models, achieving an average Dice coefficient of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99\%$$\end{document} for total retina and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93\%$$\end{document} for retinal sublayers. The most substantial improvement was in the segmentation of the photoreceptor inner segment, with Dice coefficient increasing by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$25\%$$\end{document}. This approach provides a balance between granularity and reliability, making it suitable for clinical application in tracking disease progression and evaluating therapeutic efficacy.
引用
收藏
页数:14
相关论文
共 46 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]   Active learning with MaskAL reduces annotation effort for training Mask R-CNN on a broccoli dataset with visually similar classes [J].
Blok, Pieter M. ;
Kootstra, Gert ;
Elghor, Hakim Elchaoui ;
Diallo, Boubacar ;
van Evert, Frits K. ;
van Henten, Eldert J. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 197
[3]   Self-attention CNN for retinal layer segmentation in OCT [J].
Cao, Guogang ;
Wu, Yan ;
Peng, Zeyu ;
Zhou, Zhilin ;
Dai, Cuixia .
BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) :1605-1617
[4]  
Chen J, 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[5]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   Active learning with statistical models [J].
Cohn, DA ;
Ghahramani, Z ;
Jordan, MI .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 :129-145
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   A Workshop on Measuring the Progression of Atrophy Secondary to Stargardt Disease in the ProgStar Studies: Findings and Lessons Learned [J].
Ervin, Ann-Margret ;
Strauss, Rupert W. ;
Ahmed, Mohamed, I ;
Birch, David ;
Cheetham, Janet ;
Ferris, Frederick L., III ;
Ip, Michael S. ;
Jaffe, Glenn J. ;
Maguire, Maureen G. ;
Schonbach, Etienne M. ;
Sadda, SriniVas R. ;
West, Sheila K. ;
Scholl, Hendrik P. N. ;
Wolfson, Yulia ;
Bittencourt, Millena ;
Shah, Syed Mahmood ;
Ahmed, Mohamed ;
Schonbach, Etienne ;
Fujinami, Kaoru ;
Traboulsi, Elias ;
Ehlers, Justis ;
Marino, Meghan ;
Crowe, Susan ;
Briggs, Rachael ;
Borer, Angela ;
Pinter, Anne ;
Burgnoni, Tami Fecko Nikki ;
Sunness, Janet S. ;
Applegate, Carol ;
Russell, Leslie ;
Michaelides, Michel ;
Degli Esposti, Simona ;
Webster, Anthony Moore Andrew ;
Connor, Sophie ;
Barnfield, Jade ;
Salchi, Zaid ;
Alfageme, Clara ;
Pefkianaki, Victoria McCudden Maria ;
Pefkianaki, Maria ;
Aboshiha, Jonathan ;
Holder, Gerald Liew Graham ;
Robson, Anthony ;
King, Alexa ;
Narvaez, Daniela Ivanova Cajas ;
Barnard, Katy ;
Grigg, Catherine ;
Dunbar, Hannah ;
Girard-Claudon, Yetunde Obadeyi Karine ;
Swann, Hilary ;
Rughani, Avani .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2019, 8 (02)
[10]  
Gal Y, 2017, PR MACH LEARN RES, V70