Twinned attention network for occlusion-aware facial expression recognition

被引:0
|
作者
Devasena, G. [1 ]
Vidhya, V. [1 ]
机构
[1] Indian Inst Informat Technol, Dept Comp Sci & Engn, Tiruchirappalli, Tamilnadu, India
关键词
Facial expression recognition; Occluded images; Attention mechanism; REPRESENTATION; FEATURES;
D O I
10.1007/s00138-024-01641-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial expression recognition (FER) is a tedious task in image processing for complex real-world scenarios that are captured under different lighting conditions, facial obstructions, and a diverse range of facial orientations. To address this issue, a novel Twinned attention network (Twinned-Att) is proposed in this paper for an efficient FER in occluded images. The proposed Twinned-Att network is designed in two separate modules: Holistic module (HM) and landmark centric module (LCM). The holistic module comprises of dual coordinate attention block (Dual-CA) and the Cross Convolution block (Cross-conv). The Dual-CA block is essential for learning positional, spatial, and contextual information by highlighting the most prominent characteristics in the facial regions. The Cross-conv block learns the spatial inter-dependencies and correlations to identify complex relationships between various facial regions. The LCM emphasizes smaller and distinct local regions while maintaining resilience against occlusions. Vigorous experiments have been undertaken to improve the efficacy of the proposed Twinned-Att. The results produced by the Twinned-Att illustrate the remarkable responses which achieve the accuracies of 86.92%, 85.64%, 78.40%, 69.82%, 64.71%, 85.52%, and 85.83% for the datasets viz., RAF DB, FER PLUS, FER 2013, FED RO, SFEW 2.0, occluded RAF DB and occluded FER Plus respectively. The proposed Twinned-Att network is experimented with various backbone networks, including Resnet-18, Resnet-50, and Resnet-152. It consistently outperforms well and highlights its prowess in addressing the challenges of robust FER in the images captured in complex real-world environments.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Patch attention convolutional vision transformer for facial expression recognition with occlusion
    Liu, Chang
    Hirota, Kaoru
    Dai, Yaping
    INFORMATION SCIENCES, 2023, 619 : 781 - 794
  • [22] Facial expression recognition based on attention mechanism ResNet lightweight network
    Zhao Xiao
    Yang Chen
    Wang Ruo-nan
    Li Yue-chen
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (11) : 1503 - 1510
  • [23] A Deep Structure for Facial Expression Recognition under Partial Occlusion
    Cheng, Yue
    Jiang, Bin
    Jia, Kebin
    2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 211 - 214
  • [24] Memristive patch attention neural network for facial expression recognition and edge computing
    Zheng, Kechao
    Zhou, Yue
    Duan, Shukai
    Hu, Xiaofang
    COGNITIVE NEURODYNAMICS, 2024, 18 (04) : 1799 - 1810
  • [25] Weakly Supervised Local-Global Attention Network for Facial Expression Recognition
    Zhang, Haifeng
    Su, Wen
    Wang, Zengfu
    IEEE ACCESS, 2020, 8 (08): : 37976 - 37987
  • [26] Facial Expression Recognition with Global Multiscale and Local Attention Network
    Zheng, Shukai
    Liu, Miao
    Zheng, Ligang
    Chen, Wenbin
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 403 - 414
  • [27] Facial Expression Recognition Based on Region Enhanced Attention Network
    Gongguan C.
    Fan Z.
    Hua W.
    Hui F.
    Caiming Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (01): : 152 - 160
  • [28] Facial Expression Recognition With Deeply-Supervised Attention Network
    Fan, Yingruo
    Li, Victor O. K.
    Lam, Jacqueline C. K.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 1057 - 1071
  • [29] FLIPPING CONSISTENT AND COUNTERFACTUAL ATTENTION NETWORK FOR FACIAL EXPRESSION RECOGNITION
    Liu, Wenjie
    Shi, Xinlong
    Liu, Xianzhong
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 2665 - 2669
  • [30] Convolutional Network with Densely Backward Attention for Facial Expression Recognition
    Hua, Cam-Hao
    Thien Huynh-The
    Seo, Hyunseok
    Lee, Sungyoung
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,