Ethanol Steam Reforming Using Nanoporous Carbon Materials in Conventional and Membrane Reactors

被引:0
作者
Mironova, E. Yu. [1 ]
Ermilova, M. M. [1 ]
Orekhova, N. V. [1 ]
Zhilyaeva, N. A. [1 ]
Efimov, M. N. [1 ]
Vasilev, A. A. [1 ]
Stenina, I. A. [2 ]
Yaroslavtsev, A. B. [1 ,2 ]
机构
[1] Russian Acad Sci, Topchiev Inst Petrochem Synth, Moscow 119991, Russia
[2] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow 119991, Russia
关键词
hydrogen production; membrane reactor; ethanol steam reforming; carbon supports; chitosan; detonation nanodiamonds; HYDROGEN-PRODUCTION; CATALYSTS; PD; METHANE; RU; NANODIAMONDS; PERMEABILITY; TRANSITION; MIXTURES; SUPPORT;
D O I
10.1134/S2517751624600791
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic properties of samples containing Pd and Co metals on carbon supports (IR-pyrolyzed chitosan (CT) with an activated surface and detonation nanodiamonds (DNDs) have been studied in the ethanol steam reforming process. CT is a promising catalyst support due to its developed surface and the presence of nitrogen-containing groups capable of sorbing water molecules. The use of a membrane reactor with a Pd-Ru-In membrane has significantly increased the efficiency of the ethanol steam reforming process due to removing hydrogen from the reaction zone. The hydrogen yield in the membrane reactor increases twofold or more compared to a conventional reactor, while the proportion of reaction byproducts (CO and acetaldehyde) decreases. The highest hydrogen yield (15.8 mol/h per gram of catalyst) in the membrane reactor is achieved using a Pd-Co/CTKOH catalyst.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 54 条
  • [1] Inventory of U.S. Greenhouse Gases Emissions and Sinks, (2022)
  • [2] Maestre V.M., Ortiz A., Ortiz I., Renew. Sustain. Energy Rev, 152, (2021)
  • [3] AlZohbi G., Chem. Eng, 8, (2024)
  • [4] Aravindan M., Praveen Kumar G., Res. Eng, 20, (2023)
  • [5] Hassan Q., Algburi S., Jaszczur M., Al-Jiboory A.K., Al Musawi T.J., Ali B.M., Viktor P., Fodor M., Ahsan M., Salman H.M., Sameen A.Z., Process Safety Environ. Prot, 184, (2024)
  • [6] Karasevich V.A., Elistratov V.V., Lopatin A.S., Mingaleeva R.D., Ternikov O.V., Putilova I.V., Int. J. Hydrogen Energy, 57, (2024)
  • [7] Fajm J.L.C., Cordeiro M.N.D.S., Renew. Sustain. Energy Rev, 189, (2024)
  • [8] Zainal B.S., Ker P.J., Mohamed H., Ong H.C., Fattah I.M.R., Rahman S.M.A., Nghiem L.D., Mahlia T.M.I., Renew. Sustain. Energy Rev, 189, (2024)
  • [9] Jamil A., Rafiq S., Iqbal T., Khan H.A.A., Khan H.M., Azeem B., Mustafa M.Z., Hanbazazah A.S., Chemosphere, 303, (2022)
  • [10] Stenina I.A., Yaroslavtsev A.B., Membr. Membr. Technol, 6, (2024)