Volume Estimation of Glaciers in Alaknanda Sub-basin

被引:0
作者
Alok, Shivang [1 ]
Mishra, Poonam [1 ]
Rajak, D. Ram [2 ]
Singh, Sushil K. [3 ]
Tripathi, Naveen [3 ]
机构
[1] Pandit Deendayal Energy Univ, Sch Technol, Dept Math, Gandhinagar, Gujarat, India
[2] Space Applicat Ctr, Res Outreach & Training Management Grp, Ahmadabad, Gujarat, India
[3] Space Applicat Ctr, Cryosphere Sci Div, Ahmadabad, Gujarat, India
关键词
GlabTop2; Glacier volume; Himalaya; Ice-thickness; Velocity; ICE-THICKNESS DISTRIBUTION; SNOW COVER; SUBGLACIAL TOPOGRAPHY; GARHWAL HIMALAYA; GANGOTRI GLACIER; CLIMATE-CHANGE; KARAKORAM; SLOPE; BASIN;
D O I
10.1007/s12524-024-02029-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Glacier volume estimation is an essential aspect of conducting studies on glacier health. In past decades, various approaches relying on Volume-Area (V-A) scaling or ice thickness distribution have developed. Demonstrative research is attempted for volume estimation of glaciers present in Alaknanda, a Himalayan sub-basin of river Ganga with an area >=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document}1 km2 for 2017. Approaches relying on V-A scaling relations, glacier velocity and basal shear stress are used for the volume estimation of 158 glaciers. The study focuses on the variability of input parameters instead of uncertainty assessment. The estimated 1-sigma volume based on V-A scaling relations ranges from 54 to 89 km3, 57 to 68 km3 for the velocity-based approach and 59 to 74 km3 for the GlabTop2 model. The average thickness of all glaciers lies between 61 to 77 m and 63 to 85 m using the velocity-based approach and Glabtop2 model respectively, for different values of shape factor (f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}). The maximum thickness estimated for the velocity approach and GlabTop2 model is 268.41 m and 290.33 m, respectively while for available ensembled ice-thickness data, it is 287.22 m. The average flux calculated for all glaciers in the region is 847.12 m2/year. On examining, the volume of individual glaciers for various approaches, only the GlabTop2 model deviates. As per area-wise glacier classification, glaciers greater than 10 km2, contributes similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hspace{0.17em}$$\end{document}54% in total area with volume contribution of similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hspace{0.17em}$$\end{document}68% for both ensembled thickness and V-A scaling relations, similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hspace{0.17em}$$\end{document}58% for the velocity-based approach, and similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hspace{0.17em}$$\end{document}55% for GlabTop2 approach. The ice-thickness distribution of large glaciers for the GlabTop2 model is low compared to other smaller glaciers. Bhagirath-Khark and Satopanth glaciers when examined for various approaches, the estimated ice-thickness and volume contrasted for the GlabTop2 model. However, when Satopanth glacier is studied solely, the latter results are in good agreement. Elevation-based hypsometry analysis is also performed, and investigated for glacier area, velocity and volume.
引用
收藏
页码:469 / 484
页数:16
相关论文
共 68 条
  • [1] Preliminary Study on Estimation of Volume of Eastern Himalayan Glaciers Using Remote Sensing Methods
    Agrawal, Anubha
    Tayal, Shresth
    [J]. JOURNAL OF CLIMATE CHANGE, 2018, 4 (01) : 13 - 21
  • [2] Alok Shivang, 2023, AIP Conference Proceedings, V2901, DOI 10.1063/5.0180134
  • [3] A review of volume-area scaling of glaciers
    Bahr, David B.
    Pfeffer, W. Tad
    Kaser, Georg
    [J]. REVIEWS OF GEOPHYSICS, 2015, 53 (01) : 95 - 140
  • [4] The physical basis of glacier volume-area scaling
    Bahr, DB
    Meier, MF
    Peckham, SD
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B9) : 20355 - 20362
  • [5] Bahuguna IM, 2014, CURR SCI INDIA, V106, P1008
  • [6] Recent glacier area changes in Himalaya-Karakoram and the impact of latitudinal variation
    Bahuguna, Ishmohan
    Rathore, Bhanu Prakash
    Jasrotia, Avtar Singh
    Randhawa, Surjeet Singh
    Yadav, Santosh Kumar Singh
    Ali, Sadiq
    Gautam, Nishtha
    Poddar, Joyeeta
    Srigyan, Madhukar
    Dhanade, Abhishek
    Joshi, Purvee
    Singh, Sushil Kumar
    Rajak, Dhani Ram
    Sharma, Shashikant
    [J]. CURRENT SCIENCE, 2021, 121 (07): : 929 - 940
  • [7] Volume-area scaling for debris-covered glaciers
    Banerjee, Argha
    [J]. JOURNAL OF GLACIOLOGY, 2020, 66 (259) : 880 - 886
  • [8] Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing
    Bhambri, Rakesh
    Bolch, Tobias
    Chaujar, Ravinder Kumar
    Kulshreshtha, Subhash Chandra
    [J]. JOURNAL OF GLACIOLOGY, 2011, 57 (203) : 543 - 556
  • [9] Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya
    Bhushan, Shashank
    Syed, Tajdarul H.
    Arendt, Anthony A.
    Kulkarni, Anil V.
    Sinha, Debanjan
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] The State and Fate of Himalayan Glaciers
    Bolch, T.
    Kulkarni, A.
    Kaab, A.
    Huggel, C.
    Paul, F.
    Cogley, J. G.
    Frey, H.
    Kargel, J. S.
    Fujita, K.
    Scheel, M.
    Bajracharya, S.
    Stoffel, M.
    [J]. SCIENCE, 2012, 336 (6079) : 310 - 314