Approximate solutions to a degenerate reaction-diffusion model: a pragmatic sharp front approach

被引:0
|
作者
Hristov, Jordan [1 ]
机构
[1] Univ Chem Technol & Met, Dept Chem Engn, Kiment Ohridsky Blvd 1756, Sofia 1756, Bulgaria
关键词
Reaction-diffusion; Approximate solutions; Integral-balance method; Scaling; TRAVELING-WAVE SOLUTIONS; NONLINEAR DIFFUSION; CHEMICAL-REACTION; MASS TRANSFER; FISHER; EQUATION; EXPRESSION; TRANSIENT;
D O I
10.1007/s10910-025-01713-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Approximate analytical solutions to a degenerate reaction-diffusion model pertinent to population dynamics and chemical kinetics have been developed. Both the degenerate diffusivity and the growth function have been formulated as power-law functions. The integral-balance method applied to a preliminary transformed model (via the Danckwerts transformation) and by a direct integration approach has provided physically reasonable results. The model equation scaling has revealed the Fourier number as controlling dimensionless group.
引用
收藏
页码:1126 / 1153
页数:28
相关论文
共 50 条
  • [21] Front Propagation for Reaction-Diffusion Equations in Composite Structures
    Freidlin, M.
    Koralov, L.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1663 - 1681
  • [22] A scaling transformation method and exact solutions of nonlinear reaction-diffusion model
    Wang, Xin
    Liu, Yang
    MODERN PHYSICS LETTERS B, 2020, 34 (31):
  • [23] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [24] Interface development for the nonlinear degenerate multidimensional reaction-diffusion equations
    Abdulla, Ugur G.
    Abuweden, Amna
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [25] Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model
    Yan, Xiang-Ping
    Li, Wan-Tong
    NONLINEARITY, 2010, 23 (06) : 1413 - 1431
  • [26] Nonlinear reaction-diffusion: a microscopic approach
    Boon, Jean Pierre
    Lutsko, James F.
    Lutsko, Christopher
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (03): : 631 - 636
  • [27] Entire solutions of delayed reaction-diffusion equations
    Lv, Guangying
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (03): : 204 - 216
  • [28] Convergence of stationary solutions of reaction-diffusion problems
    Vlamos, Panayiotis M.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2007, 10 (04) : 553 - 557
  • [29] Approximate analytical solutions of reaction-diffusion equations with exponential source term: Homotopy perturbation method (HPM)
    Ajadi, S. O.
    Zuilino, M.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (10) : 1634 - 1639
  • [30] FRONT INTERACTION AND NONHOMOGENEOUS EQUILIBRIA FOR TRISTABLE REACTION-DIFFUSION EQUATIONS
    RUBINSTEIN, J
    STERNBERG, P
    KELLER, JB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) : 1669 - 1685