Approximate solutions to a degenerate reaction-diffusion model: a pragmatic sharp front approach

被引:0
|
作者
Hristov, Jordan [1 ]
机构
[1] Univ Chem Technol & Met, Dept Chem Engn, Kiment Ohridsky Blvd 1756, Sofia 1756, Bulgaria
关键词
Reaction-diffusion; Approximate solutions; Integral-balance method; Scaling; TRAVELING-WAVE SOLUTIONS; NONLINEAR DIFFUSION; CHEMICAL-REACTION; MASS TRANSFER; FISHER; EQUATION; EXPRESSION; TRANSIENT;
D O I
10.1007/s10910-025-01713-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Approximate analytical solutions to a degenerate reaction-diffusion model pertinent to population dynamics and chemical kinetics have been developed. Both the degenerate diffusivity and the growth function have been formulated as power-law functions. The integral-balance method applied to a preliminary transformed model (via the Danckwerts transformation) and by a direct integration approach has provided physically reasonable results. The model equation scaling has revealed the Fourier number as controlling dimensionless group.
引用
收藏
页码:1126 / 1153
页数:28
相关论文
共 50 条
  • [1] Sharp Front Approach Solutions to Some Doubly Degenerate Reaction-Diffusion Models
    Hristov, Jordan
    SYMMETRY-BASEL, 2025, 17 (01):
  • [2] Approximate Solutions to a Degenerate Diffusion Equation with Absorption and Production: A Sharp Front Approach
    Hristov, Jordan
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [3] Variational approach of critical sharp front speeds in degenerate diffusion model with time delay
    Xu, Tianyuan
    Ji, Shanming
    Mei, Ming
    Yin, Jingxue
    NONLINEARITY, 2020, 33 (08) : 4013 - 4029
  • [4] Entire solutions for a reaction-diffusion equation with doubly degenerate nonlinearity
    Yan, Rui
    Li, Xiaocui
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [5] A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cutoff
    Popovic, Nikola
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (03): : 405 - 437
  • [6] A geometric analysis of front propagation in a family of degenerate reaction-diffusion equations with cutoff
    Nikola Popović
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 405 - 437
  • [7] On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
    Sherratt, J. A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) : 64 - 79
  • [8] Front propagation and segregation in a reaction-diffusion model with cross-diffusion
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, V
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 45 - 60
  • [9] Front propagation and global bifurcations in a multivariable reaction-diffusion model
    Knobloch, Edgar
    Yochelis, Arik
    CHAOS, 2023, 33 (05)
  • [10] INDIRECT DIFFUSION EFFECT IN DEGENERATE REACTION-DIFFUSION SYSTEMS
    Einav, Amit
    Morgan, Jeffrey J.
    Tang, Bao Q.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4314 - 4361