Fractal dimensions of the graph and level sets of the Riemann-Rademacher functions

被引:0
作者
Yi, Shanfeng [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2025年 / 206卷 / 03期
基金
中国国家自然科学基金;
关键词
Riemann-Rademacher functions; Dimensions; Graph; Level set; Hausdorff measure; HAUSDORFF DIMENSION; BERNOULLI CONVOLUTIONS; FAMILY;
D O I
10.1007/s00605-025-02058-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Rs(x)=& sum;(infinity)(i=1)i(-s)R(i)(x) be the Riemann-Rademacher functions, where s>1 and {Ri(x)}i=1 infinity is the classical Rademacher function system. In this paper, we prove that both the box and Assouad dimensions of the graph of R-s(x) are equal to 2. We also study the Hausdorff dimension of the graph and level sets of R-s(x), by constructing a new sequence of Rademacher functions R-s,R-n(x), and based on the absolute continuity of their distribution functions and the L-p-norm (0<p <=+infinity) uniform boundedness of density functions.
引用
收藏
页码:747 / 769
页数:23
相关论文
共 35 条
  • [1] Beyer W.A., Hausdorff dimension of level sets of some Rademacher series, Pacific J. Math, 12, pp. 35-46, (1962)
  • [2] Beyer W.A., Cardinality of level sets of Rademacher series whose coefficients form a geometric progression, Proc. Amer. Math. Soc, 13, pp. 579-584, (1962)
  • [3] Bishop C.J., Peres Y., Fractals in probability and analysis, Cambridge Studies in Advanced Mathematics, 162, (2017)
  • [4] Chung K.L., A course in probability theory, (2001)
  • [5] Erdos P., On a family of symmetric Bernoulli convolutions, Amer. J. Math, 61, pp. 974-975, (1939)
  • [6] Erdos P., On the smooth properties of a family of Bernoulli convolutions, Amer. J. Math, 62, pp. 180-186, (1940)
  • [7] Falconer K., Fractal Geometry: Mathematical Foundations and Applications, (2014)
  • [8] Feng D.J., The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math, 195, pp. 24-101, (2005)
  • [9] Fraser J., Assouad Dimension and Fractal Geometry, Cambridge Tracts in Mathematics, (2020)
  • [10] Garsia A.M., Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc, 102, pp. 409-432, (1962)