An improved YOLOv8 model for prohibited item detection with deformable convolution and dynamic head

被引:0
|
作者
Guan, Fangjing [1 ]
Zhang, Heng [2 ]
Wang, Xiaoming [2 ]
机构
[1] WuXi City Coll Vocat Technol, Ind Internet Sch, Wuxi, Peoples R China
[2] Xihua Univ, Sch Comp & Software Engn, Chengdu, Peoples R China
关键词
X-ray Security Inspection; YOLOv8; Model; Object Detection; Computer Vision; INSPECTION;
D O I
10.1007/s11554-025-01665-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray security inspection is critical for maintaining public safety and transportation security. However, traditional manual inspection methods are often ineffective due to the challenges posed by complex backgrounds and severe occlusions in X-ray images, resulting in false positives and negatives. This study proposes an enhanced object detection framework based on the YOLOv8 model to address these challenges. Key improvements include the integration of the ADown downsampling module to reduce computational complexity while enhancing detection accuracy and the incorporation of Deformable Convolutional Networks v2 (DCNv2) to improve deformable feature extraction. To strengthen feature representation, the Spatial Pyramid Pooling-Fast with ReLU and Efficient Local Attention (SPPF_RE) module is introduced to effectively integrate global and local features. Additionally, the Dynamic Head (DyHead) module is employed to enhance detection in complex backgrounds, while the Pixels-IOU (PIoU) loss function improves the detection accuracy of rotated objects. Experimental results on the OPIXray and HIXray datasets demonstrate that the proposed framework significantly outperforms the baseline model, achieving notable improvements in detection accuracy. The code can be accessed via the following link: https://github.com/Guanfj2024/x-ray-detection.git
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Underwater Object Detection Algorithm Based on an Improved YOLOv8
    Zhang, Fubin
    Cao, Weiye
    Gao, Jian
    Liu, Shubing
    Li, Chenyang
    Song, Kun
    Wang, Hongwei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [22] Improved Ship Detection with YOLOv8 Enhanced with MobileViT and GSConv
    Zhao, Xuemeng
    Song, Yinglei
    ELECTRONICS, 2023, 12 (22)
  • [23] Object detection of mural images based on improved YOLOv8
    Wang, Penglei
    Fan, Xin
    Yang, Qimeng
    Tian, Shengwei
    Yu, Long
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [24] UAV inspection insulator defect detection method based on dynamic adaptation improved YOLOv8
    Hu, Cong
    Lv, Lingfeng
    Zhou, Tian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [25] YOLOv8: Advancements and Innovations in Object Detection
    Swathi, Y.
    Challa, Manoj
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 1 - 13
  • [26] A Study on Weed Recognition Based on an Improved YOLOv8 Model
    Liu, Jiankun
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 463 - 466
  • [27] YOLOv8-QR: An improved YOLOv8 model via attention mechanism for object detection of QR code defects
    Zhao, Lun
    Liu, Jie
    Ren, Yu
    Lin, Chunli
    Liu, Jiyuan
    Abbas, Zeshan
    Islam, Md Shafiqul
    Xiao, Gang
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [28] NHD-YOLO: Improved YOLOv8 using optimized neck and head for product surface defect detection with data augmentation
    Chen, Faquan
    Deng, Miaolei
    Gao, Hui
    Yang, Xiaoya
    Zhang, Dexian
    IET IMAGE PROCESSING, 2024, 18 (07) : 1915 - 1926
  • [29] Vehicle-Pedestrian Detection Method Based on Improved YOLOv8
    Wang, Bo
    Li, Yuan-Yuan
    Xu, Weijie
    Wang, Huawei
    Hu, Li
    ELECTRONICS, 2024, 13 (11)
  • [30] Underwater Object Detection in Marine Ranching Based on Improved YOLOv8
    Jia, Rong
    Lv, Bin
    Chen, Jie
    Liu, Hailin
    Cao, Lin
    Liu, Min
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (01)