An improved YOLOv8 model for prohibited item detection with deformable convolution and dynamic head

被引:0
|
作者
Guan, Fangjing [1 ]
Zhang, Heng [2 ]
Wang, Xiaoming [2 ]
机构
[1] WuXi City Coll Vocat Technol, Ind Internet Sch, Wuxi, Peoples R China
[2] Xihua Univ, Sch Comp & Software Engn, Chengdu, Peoples R China
关键词
X-ray Security Inspection; YOLOv8; Model; Object Detection; Computer Vision; INSPECTION;
D O I
10.1007/s11554-025-01665-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
X-ray security inspection is critical for maintaining public safety and transportation security. However, traditional manual inspection methods are often ineffective due to the challenges posed by complex backgrounds and severe occlusions in X-ray images, resulting in false positives and negatives. This study proposes an enhanced object detection framework based on the YOLOv8 model to address these challenges. Key improvements include the integration of the ADown downsampling module to reduce computational complexity while enhancing detection accuracy and the incorporation of Deformable Convolutional Networks v2 (DCNv2) to improve deformable feature extraction. To strengthen feature representation, the Spatial Pyramid Pooling-Fast with ReLU and Efficient Local Attention (SPPF_RE) module is introduced to effectively integrate global and local features. Additionally, the Dynamic Head (DyHead) module is employed to enhance detection in complex backgrounds, while the Pixels-IOU (PIoU) loss function improves the detection accuracy of rotated objects. Experimental results on the OPIXray and HIXray datasets demonstrate that the proposed framework significantly outperforms the baseline model, achieving notable improvements in detection accuracy. The code can be accessed via the following link: https://github.com/Guanfj2024/x-ray-detection.git
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Improved YOLOv8 for Small Object Detection
    Xue, Huafeng
    Chen, Jilin
    Tang, Ruichun
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 266 - 272
  • [2] Fish Catch Sorting and Detection Model Improved Based on YOLOv8 Model
    Yang, Ping
    Shi, Tiange
    Yuan, Youdong
    Jiang, Hanbing
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (04): : 1291 - 1310
  • [3] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [4] Improved YOLOv5 Model for X-Ray Prohibited Item Detection
    Dong Yishan
    Li Zhaoxin
    Guo Jingyuan
    Chen Tianyu
    Lu Shuhua
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (04)
  • [5] Lightweight YOLOv8 for Wheat Head Detection
    Fang, Chen
    Yang, Xiang
    IEEE ACCESS, 2024, 12 : 66214 - 66222
  • [6] Improved YOLOv8 Model for a Comprehensive Approach to Object Detection and Distance Estimation
    Khow, Zu Jun
    Tan, Yi-Fei
    Karim, Hezerul Abdul
    Rashid, Hairul Azhar Abdul
    IEEE ACCESS, 2024, 12 : 63754 - 63767
  • [7] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [8] Improved container damage detection algorithm of YOLOv8
    Yu, Ding
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 90 - 95
  • [9] Vehicle Detection and Tracking Based on Improved YOLOv8
    Liu, Yunxiang
    Shen, Shujun
    IEEE ACCESS, 2025, 13 : 24793 - 24803
  • [10] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23