Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease

被引:0
作者
Birkenbihl, Colin [1 ]
Cuppels, Madison [1 ]
Boyle, Rory T. [2 ]
Klinger, Hannah M. [1 ]
Langford, Oliver [3 ]
Coughlan, Gillian T. [1 ]
Properzi, Michael J. [1 ]
Chhatwal, Jasmeer [1 ,4 ]
Price, Julie C. [5 ]
Schultz, Aaron P. [1 ,6 ]
Rentz, Dorene M. [4 ]
Amariglio, Rebecca E. [4 ]
Johnson, Keith A. [5 ]
Gottesman, Rebecca F. [7 ]
Mukherjee, Shubhabrata [8 ]
Maruff, Paul [9 ,10 ]
Lim, Yen Ying [9 ]
Masters, Colin L. [10 ]
Beiser, Alexa [11 ,12 ]
Resnick, Susan M. [13 ]
Hughes, Timothy M. [14 ,15 ]
Burnham, Samantha [16 ]
Tunali, Ilke [16 ]
Landau, Susan [17 ]
Cohen, Ann D. [18 ]
Johnson, Sterling C. [19 ,20 ]
Betthauser, Tobey J. [19 ,20 ]
Seshadri, Sudha [11 ,21 ]
Lockhart, Samuel N. [14 ]
O'Bryant, Sid E. [22 ]
Vemuri, Prashanthi [23 ]
Sperling, Reisa A. [1 ,4 ]
Hohman, Timothy J. [24 ,25 ,26 ]
Donohue, Michael C. [3 ]
Buckley, Rachel F. [1 ,4 ,27 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] Univ Penn, Penn Frontotemporal Degenerat Ctr, Perelman Sch Med, Dept Neurol, Philadelphia, PA USA
[3] Univ Southern Calif, Alzheimer Therapeut Res Inst, San Diego, CA USA
[4] Harvard Med Sch, Brigham & Womens Hosp, Ctr Alzheimer Res & Treatment, Dept Neurol, Boston, MA 02115 USA
[5] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Charlestown, MA 02129 USA
[7] Natl Inst Neurol Disorders & Stroke, Bethesda, MD USA
[8] Univ Washington, Div Gen Internal Med, Dept Med, Seattle, WA USA
[9] Monash Univ, Turner Inst Brain & Mental Hlth, Sch Psychol Sci, Clayton, Vic, Australia
[10] Univ Melbourne, Florey Inst, Parkville, Vic, Australia
[11] Boston Univ, Dept Med, Chobanian & Avedisian Sch Med, Sch Med, Boston, MA 02118 USA
[12] Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA
[13] NIA, Lab Behav Neurosci, Baltimore, MD USA
[14] Wake Forest Sch Med, Dept Internal Med, Winston Salem, NC USA
[15] Wake Forest Sch Med, Alzheimers Dis Res Ctr, Winston Salem, NC USA
[16] Eli Lilly & Co, Indianapolis, IN USA
[17] Univ Calif Berkeley, Neurosci Dept, Berkeley, CA USA
[18] Univ Pittsburgh, Sch Med, Dept Psychiat, 3811 OHara St, Pittsburgh, PA 15213 USA
[19] Univ Wisconsin Madison, Dept Med, Madison, WI USA
[20] Wisconsins Alzheimers Dis Res Ctr, Madison, WI USA
[21] Univ Texas Hlth Sci Ctr San Antonio, Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, San Antonio, TX USA
[22] Univ North Texas, Inst Translat Res, Dept Family Med, Hlth Sci Ctr, Ft Worth, TX USA
[23] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
[24] Vanderbilt Univ, Med Ctr, Vanderbilt Memory & Alzheimers Ctr, Nashville, TN USA
[25] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN USA
[26] Vanderbilt Univ, Vanderbilt Genet Inst, Sch Med, Nashville, TN USA
[27] Univ Melbourne, Melbourne Sch Psychol Sci, Melbourne, Vic, Australia
关键词
Cognitive resilience; Alzheimer's disease; Dementia; Machine learning; Artificial intelligence; Cognitive reserve; Pathology resistance; Cognitive decline;
D O I
10.1186/s40708-024-00249-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals. We demonstrate that this approach makes specific, uncontrollable assumptions and likely leads to biased and erroneous resilience estimates. This is especially true when information about CR is contained in the data the linear model was fitted to, either through inclusion of CR-associated variables or due to correlation. We propose an alternative strategy which overcomes the standard approach's limitations using machine learning principles. Our proposed approach makes fewer assumptions about the data and CR and achieves better estimation accuracy on simulated ground-truth data.
引用
收藏
页数:11
相关论文
共 29 条
  • [1] "Hang Ups, Let Downs, Bad Breaks, Setbacks": Impact of Structural Socioeconomic Racism and Resilience on Cognitive Change Over Time for Persons Racialized as Black
    Adkins-Jackson, Paris B.
    Kim, Boeun
    Tejera, Cesar Higgins
    Ford, Tiffany N.
    Gobaud, Ariana N.
    Sherman-Wilkins, Kyler J.
    Turney, Indira C.
    Avila-Rieger, Justina F.
    Sims, Kendra D.
    Okoye, Safiyyah M.
    Belsky, Daniel W.
    Hill-Jarrett, Tanisha G.
    Samuel, Laura
    Solomon, Gabriella
    Cleeve, Jack H.
    Gee, Gilbert
    Thorpe Jr, Roland J.
    Crews, Deidra C.
    Hardeman, Rachel R.
    Bailey, Zinzi D.
    Szanton, Sarah L.
    Manly, Jennifer J.
    [J]. HEALTH EQUITY, 2024, 8 (01) : 254 - 268
  • [2] Resistance vs resilience to Alzheimer disease Clarifying terminology for preclinical studies
    Arenaza-Urquijo, Eider M.
    Vemuri, Prashanthi
    [J]. NEUROLOGY, 2018, 90 (15) : 695 - 703
  • [3] Socioeconomic Status, Biological Aging, and Memory in a Diverse National Sample of Older US Men and Women
    Avila-Rieger, Justina
    Turney, Indira C.
    Vonk, Jet M. J.
    Esie, Precious
    Seblova, Dominika
    Weir, Vanessa R.
    Belsky, Daniel W.
    Manly, Jennifer J.
    [J]. NEUROLOGY, 2022, 99 (19) : E2114 - E2124
  • [4] Birkenbihl C, 2024, BRAIN COMMUN, V6, DOI 10.1093/braincomms/fcae445
  • [5] Unraveling the heterogeneity in Alzheimer's disease progression across multiple cohorts and the implications for data-driven disease modeling
    Birkenbihl, Colin
    Salimi, Yasamin
    Frohlich, Holger
    [J]. ALZHEIMERS & DEMENTIA, 2022, 18 (02) : 251 - 261
  • [6] Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia-lessons for translation into clinical practice
    Birkenbihl, Colin
    Emon, Mohammad Asif
    Vrooman, Henri
    Westwood, Sarah
    Lovestone, Simon
    Hofmann-Apitius, Martin
    Froehlich, Holger
    [J]. EPMA JOURNAL, 2020, 11 (03) : 367 - 376
  • [7] Determinants of cognitive and brain resilience to tau pathology: a longitudinal analysis
    Bocancea, Diana I.
    Svenningsson, Anna L.
    van Loenhoud, Anna C.
    Groot, Colin
    Barkhof, Frederik
    Strandberg, Olof
    Smith, Ruben
    La Joie, Renaud
    Rosen, Howard J.
    Pontecorvo, Michael J.
    Rabinovici, Gil D.
    van der Flier, Wiesje M.
    Hansson, Oskar
    Ossenkoppele, Rik
    [J]. BRAIN, 2023, 146 (09) : 3719 - 3734
  • [8] Measuring Resilience and Resistance in Aging and Alzheimer Disease Using Residual Methods A Systematic Review and Meta-analysis
    Bocancea, Diana, I
    van Loenhoud, Anna C.
    Groot, Colin
    Barkhof, Frederik
    van der Flier, Wiesje M.
    Ossenkoppele, Rik
    [J]. NEUROLOGY, 2021, 97 (10) : 474 - 488
  • [9] Cognitive Resilience to Alzheimer's Disease Pathology in the Human Brain
    Bowles, Erin J. Aiello
    Crane, Paul K.
    Walker, Rod L.
    Chubak, Jessica
    LaCroix, Andrea Z.
    Anderson, Melissa L.
    Rosenberg, Dori
    Keene, C. Dirk
    Larson, Eric B.
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2019, 68 (03) : 1071 - 1083
  • [10] Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer's disease
    Dansson, Hakon Valur
    Stempfle, Lena
    Egilsdottir, Hildur
    Schliep, Alexander
    Portelius, Erik
    Blennow, Kaj
    Zetterberg, Henrik
    Johansson, Fredrik D.
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2021, 13 (01)