Proximal pairs and relatively nonexpansive mappings in hyperconvex spaces

被引:0
作者
Gabeleh, M. [1 ]
Markin, J. [2 ]
机构
[1] Ayatollah Boroujerdi Univ, Dept Math, Boroujerd, Iran
[2] 1440 8th St, Golden, CO 80401 USA
关键词
Best proximity pair; hyperconvex space; nonexpansive mapping; proximal pair; THEOREM;
D O I
10.1007/s11784-025-01171-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, we present new and more general conditions to ensure the nonemptyness of proximal pairs in hyperconvex spaces and use them to investigate the existence of a best proximity point for multivalued non-self mappings in such spaces. In this way, we extend and improve the main conclusions of Kirk et al. (Numer Funct Anal Opt 24:851-862, 2003). We also discuss the existence of best proximity points (pairs) for cyclic (noncyclic) relatively nonexpansive mappings and obtain counterpart results of Eladred et al. (Stud Math 17:283-293, 2005) in the framework of hyperconvex metric spaces and in a special case, in the non-reflexive Banach space & ell;infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}, where it is bounded, closed and convex subsets may not be weakly compact.
引用
收藏
页数:18
相关论文
共 23 条
[1]   A selection theorem in metric trees [J].
Aksoy, A. G. ;
Khamsi, M. A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2957-2966
[2]  
Aronszajn N., 1956, Pacific J. Math., V6, P405
[3]  
Baillon J.B., 1988, CONT MATH, V72, P11
[4]  
BRODSKII MS, 1948, DOKL AKAD NAUK SSSR, V59, P837
[5]   Proximal normal structure and relatively nonexpansive mappings [J].
Eldred, AA ;
Kirk, WA ;
Veeramani, P .
STUDIA MATHEMATICA, 2005, 171 (03) :283-293
[6]   Nonexpansive retractions in hyperconvex spaces [J].
Espínola, R ;
Kirk, WA ;
López, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :557-570
[7]  
Espínola R, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P391
[8]   A new approach to relatively nonexpansive mappings [J].
Espinola, Rafa .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :1987-1995
[9]  
Espnola R., 2005, Annal. Univ. Mariae Curie-Skodowska Lublin-Polonia, V59, P9
[10]   BEST PROXIMITY PAIR RESULTS FOR RELATIVELY NONEXPANSIVE MAPPINGS IN GEODESIC SPACES [J].
Fernandez-Leon, Aurora ;
Nicolae, Adriana .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (11) :1399-1418