Fourier Multipliers and Pseudo-differential Operators on Fock-Sobolev Spaces

被引:0
作者
Thangavelu, Sundaram [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, India
关键词
Fock space; Bargmann transform; Fourier multipliers; Pseudo-differential operators;
D O I
10.1007/s00020-024-02789-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any bounded linear operator T on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2({\mathbb {R}}<^>n) $$\end{document} gives rise to the operator S=B degrees T degrees B & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S= B \circ T \circ B<^>*$$\end{document} on the Fock space F(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}({{\mathbb {C}}}<^>n) $$\end{document} where B is the Bargmann transform. In this article we identify those S which correspond to Fourier multipliers and pseudo-differential operators on L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2({\mathbb {R}}<^>n)$$\end{document} and study their boundedness on the Fock-Sobolev spaces Fs,2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {F}<^>{s,2}({{\mathbb {C}}}<^>n)$$\end{document}.
引用
收藏
页数:21
相关论文
共 19 条
  • [1] Bais SR, 2023, J PSEUDO-DIFFER OPER, V14, DOI 10.1007/s11868-023-00506-w
  • [3] On heat equations associated with fractional harmonic oscillators
    Bhimani, Divyang G.
    Manna, Ramesh
    Nicola, Fabio
    Thangavelu, Sundaram
    Trapasso, S. Ivan
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2470 - 2492
  • [4] Sobolev spaces associated to the harmonic oscillator
    Bongioanni, B.
    Torrea, J. L.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03): : 337 - 360
  • [5] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [6] A boundedness criterion for singular integral operators of convolution type on the Fock space
    Cao, Guangfu
    Li, Ji
    Shen, Minxing
    Wick, Brett D.
    Yan, Lixin
    [J]. ADVANCES IN MATHEMATICS, 2020, 363
  • [7] FRACTIONAL FOCK-SOBOLEV SPACES
    Cho, Hong Rae
    Park, Soohyun
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2020, 237 : 79 - 97
  • [8] GENERALIZED FOCK SPACES AND ASSOCIATED OPERATORS
    CHOLEWINSKI, FM
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (01) : 177 - 202
  • [9] FOLLAND GB, 1989, ANN MATH STUD, P1
  • [10] Hardy GH., 1933, J. London Math. Soc., V8, P227, DOI [10.1112/jlms/s1-8.3.227, DOI 10.1112/JLMS/S1-8.3.227]