The positive solution for the nonlinear p-Laplacian Choquard equation on lattice graphs

被引:0
作者
Liu, Yang [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Variational method; mountain-pass theorem; <italic>p</italic>-Laplacian; Choquard equation; lattice graph; EXISTENCE;
D O I
10.1007/s11784-025-01187-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the author considers the nonlinear p-Laplacian Choquard equation on a weighted lattice graph. Under some suitable conditions on the potential function, the author proves that if the nonlinearity satisfies some growth conditions, the equation under study has a strictly positive solution. Compared with previous results, the conditions on the potential are relaxed and p can take any value in (1,+infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,+\infty )$$\end{document}. Moreover, to our knowledge, there is currently no existence result for the p-Laplacian Choquard equation with the nonlinearity on lattice graphs.
引用
收藏
页数:17
相关论文
共 47 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Bianchi D, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-022-02249-w
[3]   A note on Kazdan-Warner equation on networks [J].
Camilli, Fabio ;
Marchi, Claudio .
ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) :693-704
[4]   Ground States for Logarithmic Schrodinger Equations on Locally Finite Graphs [J].
Chang, Xiaojun ;
Wang, Ru ;
Yan, Duokui .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
[5]   Multiple solutions for ageneralized Chern-Simons equation on graphs [J].
Chao, Ruixue ;
Hou, Songbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
[6]   A p-TH YAMABE EQUATION ON GRAPH [J].
Ge, Huabin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) :2219-2224
[7]   Kazdan-Warner equation on graph in the negative case [J].
Ge, Huabin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) :1022-1027
[8]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135
[9]   Existence of positive solutions to some nonlinear equations on locally finite graphs [J].
Grigor'yan, Alexander ;
Lin Yong ;
Yang YunYan .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) :1311-1324
[10]   Yamabe type equations on graphs [J].
Grigor'yan, Alexander ;
Lin, Yong ;
Yang, Yunyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :4924-4943