Survival outcome prediction of esophageal squamous cell carcinoma patients based on radiomics and mutation signature

被引:0
作者
Yan, Ting [1 ,2 ]
Yan, Zhenpeng [2 ]
Chen, Guohui [2 ]
Xu, Songrui [2 ]
Wu, Chenxuan [3 ]
Zhou, Qichao [2 ]
Wang, Guolan [4 ]
Li, Ying [5 ]
Jia, Mengjiu [4 ]
Zhuang, Xiaofei [6 ]
Yang, Jie [7 ]
Liu, Lili [2 ]
Wang, Lu [2 ]
Wu, Qinglu [2 ]
Wang, Bin [5 ]
Yan, Tianyi [3 ]
机构
[1] Shanxi Med Univ, Clin Med Coll 2, Taiyuan 030001, Shanxi, Peoples R China
[2] Shanxi Med Univ, Translat Med Res Ctr, Taiyuan 030001, Shanxi, Peoples R China
[3] Beijing Inst Technol, Sch Life Sci, Beijing, Peoples R China
[4] Shanxi Technol & Business Univ, Sch Comp Informat Engn, Taiyuan 030006, Shanxi, Peoples R China
[5] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030024, Shanxi, Peoples R China
[6] Shanxi Canc Hosp, Dept Thorac Surg, Taiyuan 030013, Shanxi, Peoples R China
[7] Shanxi Med Univ, Dept Gastroenterol, Hosp 2, Taiyuan 030001, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Esophageal squamous cell carcinoma; Mutation signature; Nomogram; Prognosis; Radiomics; GENES;
D O I
10.1186/s40644-024-00821-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundThe present study aimed to develop a nomogram model for predicting overall survival (OS) in esophageal squamous cell carcinoma (ESCC) patients.MethodsA total of 205 patients with ESCC were enrolled and randomly divided into a training cohort (n = 153) and a test cohort (n = 52) at a ratio of 7:3. Multivariate Cox regression was used to construct the radiomics model based on CT data. The mutation signature was constructed based on whole genome sequencing data and found to be significantly associated with the prognosis of patients with ESCC. A nomogram model combining the Rad-score and mutation signature was constructed. An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors was constructed.ResultsA total of 8 CT features were selected for multivariate Cox regression analysis to determine whether the Rad-score was significantly correlated with OS. The area under the curve (AUC) of the radiomics model was 0.834 (95% CI, 0.767-0.900) for the training cohort and 0.733 (95% CI, 0.574-0.892) for the test cohort. The Rad-score, S3, and S6 were used to construct an integrated RM nomogram. The predictive performance of the RM nomogram model was better than that of the radiomics model, with an AUC of 0. 830 (95% CI, 0.761-0.899) in the training cohort and 0.793 (95% CI, 0.653-0.934) in the test cohort. The Rad-score, TNM stage, lymph node metastasis status, S3, and S6 were used to construct an integrated RMC nomogram. The predictive performance of the RMC nomogram model was better than that of the radiomics model and RM nomogram model, with an AUC of 0. 862 (95% CI, 0.795-0.928) in the training cohort and 0. 837 (95% CI, 0.705-0.969) in the test cohort.ConclusionAn integrated nomogram model combining the Rad-score, mutation signature, and clinical factors can better predict the prognosis of patients with ESCC.
引用
收藏
页数:13
相关论文
共 49 条
[1]   The repertoire of mutational signatures in human cancer [J].
Alexandrov, Ludmil B. ;
Kim, Jaegil ;
Haradhvala, Nicholas J. ;
Huang, Mi Ni ;
Ng, Alvin Wei Tian ;
Wu, Yang ;
Boot, Arnoud ;
Covington, Kyle R. ;
Gordenin, Dmitry A. ;
Bergstrom, Erik N. ;
Islam, S. M. Ashiqul ;
Lopez-Bigas, Nuria ;
Klimczak, Leszek J. ;
McPherson, John R. ;
Morganella, Sandro ;
Sabarinathan, Radhakrishnan ;
Wheeler, David A. ;
Mustonen, Ville ;
Getz, Gad ;
Rozen, Steven G. ;
Stratton, Michael R. .
NATURE, 2020, 578 (7793) :94-+
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]   Long-Term Results of a Randomized Trial of Surgery With or Without Preoperative Chemotherapy in Esophageal Cancer [J].
Allum, William H. ;
Stenning, Sally P. ;
Bancewicz, John ;
Clark, Peter I. ;
Langley, Ruth E. .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (30) :5062-5067
[4]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[5]   Therapeutic and prognostic insights from the analysis of cancer mutational signatures [J].
Brady, Samuel W. ;
Gout, Alexander M. ;
Zhang, Jinghui .
TRENDS IN GENETICS, 2022, 38 (02) :194-208
[6]   Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations [J].
Brady, Samuel W. ;
Liu, Yanling ;
Ma, Xiaotu ;
Gout, Alexander M. ;
Hagiwara, Kohei ;
Zhou, Xin ;
Wang, Jian ;
Macias, Michael ;
Chen, Xiaolong ;
Easton, John ;
Mulder, Heather L. ;
Rusch, Michael ;
Wang, Lu ;
Nakitandwe, Joy ;
Lei, Shaohua ;
Davis, Eric M. ;
Naranjo, Arlene ;
Cheng, Cheng ;
Maris, John M. ;
Downing, James R. ;
Cheung, Nai-Kong V. ;
Hogarty, Michael D. ;
Dyer, Michael A. ;
Zhang, Jinghui .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition [J].
Buisson, Remi ;
Lawrence, Michael S. ;
Benes, Cyril H. ;
Zou, Lee .
CANCER RESEARCH, 2017, 77 (17) :4567-4578
[8]   Driven by by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer [J].
Castellanos, Emily ;
Feld, Emily ;
Horn, Leora .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (04) :612-623
[9]   Development and validation of MRI-based radiomics signatures models for prediction of disease-free survival and overall survival in patients with esophageal squamous cell carcinoma [J].
Chu, Funing ;
Liu, Yun ;
Liu, Qiuping ;
Li, Weijia ;
Jia, Zhengyan ;
Wang, Chenglong ;
Wang, Zhaoqi ;
Lu, Shuang ;
Li, Ping ;
Zhang, Yuanli ;
Liao, Yubo ;
Xu, Mingzhe ;
Yao, Xiaoqiang ;
Wang, Shuting ;
Liu, Cuicui ;
Zhang, Hongkai ;
Wang, Shaoyu ;
Yan, Xu ;
Kamel, Ihab R. ;
Sun, Haibo ;
Yang, Guang ;
Zhang, Yudong ;
Qu, Jinrong .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5930-5942
[10]   Radiomics in breast cancer classification and prediction [J].
Conti, Allegra ;
Duggento, Andrea ;
Indovina, Iole ;
Guerrisi, Maria ;
Toschi, Nicola .
SEMINARS IN CANCER BIOLOGY, 2021, 72 :238-250