Lévy Driven Stochastic Heat Equation with Logarithmic Nonlinearity: Well-Posedness and Large Deviation Principle

被引:0
作者
Kavin, R. [1 ]
Majee, Ananta K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Nonlinear stochastic PDE; Logarithmic nonlinearity; Strong and martingale solution; Jakubowski's version of Skorokhod theorem; NAVIER-STOKES EQUATIONS; DIFFERENTIAL-EQUATIONS; NON-LIPSCHITZ; MARTINGALE; EXISTENCE; NOISE; 2D;
D O I
10.1007/s00245-025-10247-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the well-posedness theory for solutions of the stochastic heat equations with logarithmic nonlinearity perturbed by multiplicative L & eacute;vy noise. By using Aldous tightness criteria and Jakubowski's version of the Skorokhod theorem on non-metric spaces along with the standard L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-method, we establish the existence of a path-wise unique strong solution. Moreover, by using a weak convergence method, we establish a large deviation principle for the strong solution of the underlying problem. Due to the lack of linear growth and locally Lipschitzness of the term ulog(|u|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u \log (|u|)$$\end{document} present in the underlying problem, the logarithmic Sobolev inequality and the nonlinear versions of Gronwall's inequalities play a crucial role.
引用
收藏
页数:48
相关论文
共 65 条
[1]   Superexponential growth or decay in the heat equation with a logarithmic nonlinearity [J].
Alfaro, Matthieu ;
Carles, Remi .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (04) :343-358
[2]  
[Anonymous], 1982, Stochastics
[3]  
[Anonymous], 2005, Theory of Stochastic Differential Equations with Jumps and Applications Mathematical and Analytical Techniques with Applications to Engineering
[4]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[5]  
Billingsley P., 1968, CONVERGE PROBAB MEAS, DOI DOI 10.1002/9780470316962
[6]   Well-posedness and large deviations for 2D stochastic Navier-Stokes equations with jumps [J].
Brzezniak, Zdzislaw ;
Peng, Xuhui ;
Zhai, Jianliang .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (08) :3093-3176
[7]   Large Deviations and Transitions Between Equilibria for Stochastic Landau-Lifshitz-Gilbert Equation [J].
Brzezniak, Zdzislaw ;
Goldys, Ben ;
Jegaraj, Terence .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (02) :497-558
[8]   Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains [J].
Brzezniak, Zdzislaw ;
Motyl, Elzbieta .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1627-1685
[9]   Maximal regularity for stochastic convolutions driven by L,vy processes [J].
Brzezniak, Zdzislaw ;
Hausenblas, Erika .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) :615-637
[10]  
Budhiraja A., 2000, Probab. Math. Stat., V20, P39